
Haskell

A Wild Ride

Sven M. Hallberg

pesco@gmx.de

21C3, Berlin, Dec. 27–29 2004 – p. 1/43

Structure

Safety Precautions
introduction + language fundamentals

Basic Attractions
some cool stuff

Wipeout!
the real fun stuff

15-min. Break

Workout
workshop part

21C3, Berlin, Dec. 27–29 2004 – p. 2/43

Safety Precautions

21C3, Berlin, Dec. 27–29 2004 – p. 3/43

Safety Precautions

This is not a programming course.

I’m only skimming details, to get to the interesting
points.

Feel free to ask!

This is supposed to be a fun ride!

21C3, Berlin, Dec. 27–29 2004 – p. 4/43

Language Classification

Haskell is:

purely

functional

statically typed

strongly typed

lazy

21C3, Berlin, Dec. 27–29 2004 – p. 5/43

Compiled or Interpreted?

Can be both, compiled and interpreted.

GHC: compiler, machine code

Hugs: interpreter

NHC: compiler, bytecode

HBI/HBC: interpreter/compiler

Helium: interpreter, for a subset

21C3, Berlin, Dec. 27–29 2004 – p. 6/43

Program Structure

A program is a sequence of declarations.

Declarations are absolute.

“Variables” cannot be changed at run-time!

hello = "Guten Tag!"
goodbye = "Auf Wiedersehen!"

21C3, Berlin, Dec. 27–29 2004 – p. 7/43

Function Definitions

foo x = x + 2
bar x y = foo y + x

Function arguments seperated only by whitespace.

Operators are written in infix notation.

No type signatures?

Types are deduced!

21C3, Berlin, Dec. 27–29 2004 – p. 8/43

Procedures

All functions are “pure”.

What about network or file I/O?

Solution: Strict seperation by the type system!

main = do putStrLn hello
input <- getLine
putStrLn (show input ++ "?")
putStrLn goodbye

21C3, Berlin, Dec. 27–29 2004 – p. 9/43

Types

The type system is one of the most important parts of
Haskell.

Every expression is statically typed.

Type signatures are optional.
documentation for the programmer
better error reporting by the compiler

hello :: String

21C3, Berlin, Dec. 27–29 2004 – p. 10/43

Lists

Probably most important data structure.

Singly-linked, similar to LISP.

intlist :: [Int]
intlist = [1,2,3]

charlist :: [Char]
charlist = [’H’,’i’]

emptylist :: [a]
emptylist = []

21C3, Berlin, Dec. 27–29 2004 – p. 11/43

Function Types

Functions are first-class values.
One argument:
foo :: Int -> Int

Two arguments:
bar :: Int -> Int -> Int

Last type is the return type.

21C3, Berlin, Dec. 27–29 2004 – p. 12/43

List Constructors

Values are created by constructors.

Constructors are functions.
[] and (:) are the constructors for [a].

fourints = 1 : (2 : (3 : (4 : [])))

The syntax for list literals is only syntactic sugar for
repeated application of (:)!

[1,2,3] == 1:2:3:[]

21C3, Berlin, Dec. 27–29 2004 – p. 13/43

Regular Attractions

21C3, Berlin, Dec. 27–29 2004 – p. 14/43

Local Definitions

Introduced by where clause after a declaration.

readability :: String -> Float
readability text =

if n==0 then 1
else 1 / fromIntegral n

where
n = length text

There is also let for use in expressions.

foo 5 == (let x=5 in x)

21C3, Berlin, Dec. 27–29 2004 – p. 15/43

Constructor Pattern Matching

Values are created by applying constructors to other
values.

constants = nullary constructors, e.g. [], 1, 2,. . .

The constructor and its arguments are the value.

Inspection by pattern matching on the constructors.

null [] = True
null (x:xs) = False -- ctor arguments bound

21C3, Berlin, Dec. 27–29 2004 – p. 16/43

User-Defined Data Types

Example: Controlling a magnetic card reader

data Cmd = Read Track
| Write Track

data Track = Track1 | Track2 | Track3

Types and constructors are written in upper-case.

Remember: Constructors can take any number of
arguments, of any (given!) type.

21C3, Berlin, Dec. 27–29 2004 – p. 17/43

User-Defined Data Types

Suppose the following control protocol for the reader:

Commands are three bytes, to be sent over serial.

First byte: ’a’ = “read”, ’b’ = “write”

Second byte: always ’a’

Third byte: ’a’, ’b’, ’c’ for track 1,2,3 resp.

E.g.: "aaa" for “read track 1”.

21C3, Berlin, Dec. 27–29 2004 – p. 18/43

User-Defined Data Types

⇒ Trivial Haskell function mapping Cmds to control strings:

ctlstr :: Cmd -> String
ctlstr (Read Track1) = "aaa"
ctlstr (Read Track2) = "aab"
ctlstr (Read Track3) = "aac"
ctlstr (Write Track1) = "baa"
ctlstr (Write Track2) = "bab"
ctlstr (Write Track2) = "bac"

21C3, Berlin, Dec. 27–29 2004 – p. 19/43

User-Defined Data Types

Given I/O routine sendstr to transmit a string to the
device:

sendcmd cmd = sendstr (ctlstr cmd)

⇒ Interactive device controll from an interpreter.

Main> sendcmd (Read Track1)
...stuff happens...

Remember: Cmds can be passed around and stored in
data structures.

21C3, Berlin, Dec. 27–29 2004 – p. 20/43

List Comprehensions

Lists and list operations are very common.

List comprehensions are syntactic sugar for combining
collection/selection of input elements and
generation of corresponding output elements.

Similar to set comprehensions in Mathematics:

{x2|x ∈ N, x > 5}

21C3, Berlin, Dec. 27–29 2004 – p. 21/43

List Comprehensions

Example: Haskell implementation of Quicksort:

qs [] = []
qs (x:xs) = qs [y | y<-xs, y<x]

++ [x] ++
qs [y | y<-xs, y>=x]

21C3, Berlin, Dec. 27–29 2004 – p. 22/43

Wipeout!

21C3, Berlin, Dec. 27–29 2004 – p. 23/43

The Hackers Must Have Slack.

Lazy evaluation enables construction of infinite data
structures.

Infinite lists especially

Through recursive definitions

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

21C3, Berlin, Dec. 27–29 2004 – p. 24/43

Who Uses RC4 Anyway?

Example: Memoizing an infinite data structure.

“Arcfour” works roughly like this:

From the key, calculate an S-Box.

Iterate:
Extract a certain element from the S-Box, put in
keystream.
Transform the S-Box in a certain way.

XOR the resulting keystream with the plain-text.

21C3, Berlin, Dec. 27–29 2004 – p. 25/43

Who Uses RC4 Anyway?

Imagine implementing this in C.

data structure for the S-Box

initialization routine to calculate it from key

generation of the stream in little chunks

In Haskell:

no chunking

no initialization routine!

21C3, Berlin, Dec. 27–29 2004 – p. 26/43

Who Uses RC4 Anyway?

Pseudocode:

type Key = String
data SBox = ...

mksbox :: Key -> SBox
keystream :: SBox -> [Word8]

rc4 :: Key -> [Word8] -> [Word8]
rc4 k xs = zipWith xor xs

(keystream (mksbox k))

What’s the point?

21C3, Berlin, Dec. 27–29 2004 – p. 27/43

Partial Application

Suppose you want to encrypt a bunch of files with the
same key.

Overly verbose:

key = "deadbeef"

file1_encrypted = rc4 key file1
file2_encrypted = rc4 key file2

Sleek:

enc = rc4 "deadbeef"

file1_encrypted = enc file1
file2_encrypted = enc file2

One problem: keystream will be calculated for each
call to enc.

21C3, Berlin, Dec. 27–29 2004 – p. 28/43

Partial Application

Suppose you want to encrypt a bunch of files with the
same key.

Sleek:

enc = rc4 "deadbeef"

file1_encrypted = enc file1
file2_encrypted = enc file2

One problem: keystream will be calculated for each
call to enc.

21C3, Berlin, Dec. 27–29 2004 – p. 28/43

Partial Application

Suppose you want to encrypt a bunch of files with the
same key.

Sleek:

enc = rc4 "deadbeef"

file1_encrypted = enc file1
file2_encrypted = enc file2

One problem: keystream will be calculated for each
call to enc.

21C3, Berlin, Dec. 27–29 2004 – p. 28/43

Memoization

The keystream depends only on the key.

The Haskell system is not smart enough to see that.

Make it explicit by moving to outer closure:

rc4 k = \xs -> zipWith xor xs ks
where
ks = keystream (mksbox k)

Then, all calls to rc4 key refer to the same ks.

21C3, Berlin, Dec. 27–29 2004 – p. 29/43

Type Classes

Haskell supports compile-time polymorphism.
null :: [a] -> Bool

Sometimes, that’s too general.

(+) is polymorphic, but in a restricted way:
(+) :: (Num a) => a -> a -> a

Read: “a -> a -> a under the constraint that a is a
number”.

21C3, Berlin, Dec. 27–29 2004 – p. 30/43

Type Classes

The definition of a type class looks like this:

class Num a where
(+) :: a -> a -> a
(*) :: a -> a -> a
negate :: a -> a
...

Type classes prescribe a kind of interface.

Still compile-time polymorphic!

21C3, Berlin, Dec. 27–29 2004 – p. 31/43

Typing Harder

Num is essentially the algebraic class of rings.

Fractional contains essentially the fields.
class (Num a) => Fractional a where

(/) :: a -> a -> a
recip :: a -> a

Goal: Declare the class of vector spaces.

Problem: vector space↔ associated field
smul :: a -> v -> v

21C3, Berlin, Dec. 27–29 2004 – p. 32/43

“Multi-parameter type classes”

Solution: Extend type classes (i.e. sets of types) to
relations between types.

Also needed: Functional dependencies on type
relations.

class (Fractional a) => VS v a
where
-- vector add and subtract
(ˆ+ˆ) :: v -> v -> v
(ˆ-ˆ) :: v -> v -> v
-- scalar multiplication
(*ˆ) :: a -> v -> v

class (Fractional a) => VS v a |v->a
where
-- vector add and subtract
(ˆ+ˆ) :: v -> v -> v
(ˆ-ˆ) :: v -> v -> v
-- scalar multiplication
(*ˆ) :: a -> v -> v

21C3, Berlin, Dec. 27–29 2004 – p. 33/43

“Multi-parameter type classes”

Solution: Extend type classes (i.e. sets of types) to
relations between types.

Also needed: Functional dependencies on type
relations.

class (Fractional a) => VS v a |v->a
where
-- vector add and subtract
(ˆ+ˆ) :: v -> v -> v
(ˆ-ˆ) :: v -> v -> v
-- scalar multiplication
(*ˆ) :: a -> v -> v

21C3, Berlin, Dec. 27–29 2004 – p. 33/43

Vector Space Example

To declare the Float-pairs to form a vector space (over
scalar type Float):

instance VS (Float,Float) Float where
(x,y) ˆ+ˆ (a,b) = (x+a, y+b)
(x,y) ˆ-ˆ (a,b) = (x-a, y-b)
k *ˆ (a,b) = (k*a, k*b)

Notes:

Multi-parameter type classes and “fundeps” are not
Haskell 98.

Both are supported by all major implementations.

21C3, Berlin, Dec. 27–29 2004 – p. 34/43

Conclusion

Haskell is a vast topic.

Extensions are under active research.

Still, the language is quite clear.

Can express many things very naturally.
Programs are very concise.
Rapid prototyping

Safe and robust code

21C3, Berlin, Dec. 27–29 2004 – p. 35/43

All Further Info

http://www.haskell.org/

21C3, Berlin, Dec. 27–29 2004 – p. 36/43

Workout

21C3, Berlin, Dec. 27–29 2004 – p. 37/43

Materials

GHC
http://www.haskell.org/ghc/

Hugs
http://www.haskell.org/hugs/

Emacs mode
http://www.haskell.org/haskell-mode/

Vim syntax highlighting
http://urchin.earth.li/˜ian/vim/

21C3, Berlin, Dec. 27–29 2004 – p. 38/43

Ex. 1:

Implement “Hello, World!”.

a) Compile the program and run it as a stand-alone
executable.

b) Run the main procedure from an interpreter prompt.

c) Try calling some basic I/O routines interactively at the
prompt.

Scream when done.

21C3, Berlin, Dec. 27–29 2004 – p. 39/43

Ex. 2:

Implement a function that sums a list of numbers.

Use pattern matching and recursion.

a) What is the type of this function?

b) Try your implementation on some example inputs.

21C3, Berlin, Dec. 27–29 2004 – p. 40/43

Ex. 3:

Implement a function that increments all elements in a list
of numbers.

Use pattern matching, recursion, and list construction.

The function should have the type:
(Num a) => [a] -> [a]

21C3, Berlin, Dec. 27–29 2004 – p. 41/43

Ex. 4:

Generalize the function from ex. 3 to apply any given
function of type Int -> Int to all elements of a list of
Ints.
a) What should the type of this function be?

b) Can the function be generalized to other types than
Int?

21C3, Berlin, Dec. 27–29 2004 – p. 42/43

Ex. 5:

Import the bit-manipulation modules.
import Data.Bits
import Data.Word

Look up the rotate method of class Bits in the GHC
documentation.
http://www.haskell.org/ghc/docs/

Implement a function to rotate every byte in a given list
by 4 bits.

Use your solution to ex. 4b or the standard function
map.

�

21C3, Berlin, Dec. 27–29 2004 – p. 43/43

	Structure
	Safety Precautions
	Safety Precautions
	Language Classification
	Compiled or Interpreted?
	Program Structure
	Function Definitions
	Procedures
	Types
	Lists
	Function Types
	List Constructors
	Regular Attractions
	Local Definitions
	Constructor Pattern Matching
	User-Defined Data Types
	User-Defined Data Types
	User-Defined Data Types
	User-Defined Data Types
	List Comprehensions
	List Comprehensions
	Wipeout!
	The Hackers Must Have Slack.
	Who Uses RC4 Anyway?
	Who Uses RC4 Anyway?
	Who Uses RC4 Anyway?
	Partial Application
	Partial Application
	Partial Application

	Memoization
	Type Classes
	Type Classes
	Typing Harder
	``Multi-parameter type classes''
	``Multi-parameter type classes''

	Vector Space Example
	Conclusion
	All Further Info
	Workout
	Materials
	Ex. 1:
	Ex. 2:
	Ex. 3:
	Ex. 4:
	Ex. 5:

