Applied Data Mining

Ingo Lütkebohle, Julia Lüning

21. Chaos Communication Congress

27.12.2004

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Outline

- motivation
- process of mining data
- 2 features
 - visualisation
- 3 exploration
 - statistics
 - clustering

- algorithm
- tool
- example

ヘロト 人間 ト くほ ト くほ トー

-20

motivation process of mining data

Google Query Suggestion

Find similar words with more hits.

ヘロト ヘアト ヘビト ヘビト

motivation process of mining data

Amazon Recommender System

Item shown: Holy Bible, King James Version

Customers who bought this book also bought:

- Holy Bible King James Version Study Bible (Burgundy) by Not Applicable (Na)
- The Holy Quran: An English Translation by Allamah Nooruddin
- <u>The Torah</u> by <u>Rodney</u>, <u>Rabbi Mariner</u>
- The Qur'an Translation by Abdullah Yusuf Ali
- <u>The Holy Bible: King James Version</u> by <u>Not Applicable (Na</u>)

Assocation Rule: $A \leftarrow B$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

motivation process of mining data

process of mining data

first of all: define your *objective* then:

- data collection
- 2 feature extraction
- data cleaning
- exploration summaries, clustering
- rule mining and/or classification

ヘロト ヘアト ヘビト ヘビト

visualisation

types of attributes

very simple world view:

binary true, false; present, not present nominal blue, red, green ordinal drizzle < rain < torrent numeric 4.45, 5.76, 19.33

イロト イポト イヨト イヨト 一座

visualisation

features

data mining on eMail:

- bag of words
- length of the mail (number of words)
- number of recipients
- date epoch, week number, daytime, ...
- . . .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

visualisation

text mining

- many, infrequently occuring features (words)
- one word, many meanings
- one meaning, many words
- ullet \rightarrow extensive preprocessing necessary

イロト イポト イヨト イヨト 一座

visualisation

merging

- aggregating more of the same example:
- joining different feature spaces example: pgp signature data and event data → who met who at which key signing party

```
> DAYS <- data.frame(day=c("Monday", "Tuesday",
...), num=c(1, 2, ...))
> SCHEDULE <- data.frame(SPK=("Sven", "Mitch",
...), daynum=c(2, 2, ...))
> merge(SCHEDULE,DAYS, by.x="daynum", by.y="num")
num day SPK
1 2 Tuesday Sven
2 2 Tuesday Mitch
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

.

simple whitespace separated table

	label 1	label 2	label 3	
1	3	2	1	
2	5	2	3	
3	7	3	5	
4	8	9	2	
5				

labels are optional

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

features visualisation

histograms

Histogram of dist(A)

I. Lütkebohle, J. Lüning

Applied Data Mining

visualisation

scatter plots

I. Lütkebohle, J. Lüning Applied Data Mining

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

statistics clustering

tool we use

R is a language and environment for statistical computing and graphics.

```
http://www.r-project.org/
```

FreeBSD: /usr/ports/math/R/
Debian:

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

statistics clustering

statistics in R

```
> data <- c(2, 2, 3, 3, 5, 5, 5, 6, 6, 7)
> data
2 2 3 3 5 5 5 6 6 7
> range(data)
2 7
> mean(data)
4.4
> median(data)
5
> summary(data)
Min. 1st Qu. Median Mean 3rd Qu. Max.
                 5.00 4.40
2.00
         3.00
                                5.75 7.00
```

イロン 不得 とくほ とくほ とう

statistics clustering

statistics in R

```
> data
2 2 3 3 5 5 5 6 6 7
> var(data)
3.155556
> duta <- c(5, 5, 3, 6, 7, 9, 7, 4, 2, 3)
> cov( data, duta )
-0.6
> cor (data, duta )
-0.1547056
```

statistics clustering

clustering

Idea

eMails with similar subject lines are about similar topics

for each list

- get all subject lines
- If or all words: count how often the word occurs in the subject lines
- Iclean the lists from words, that carry no information

compare the lists of the word counts \rightarrow clustering

イロン 不得 とくほ とくほ とう

statistics clustering

cluster plots

These two components explain 96.48 % of the point variability.

<ロト <回 > < 注 > < 注 > 、

æ

I. Lütkebohle, J. Lüning Applied Data Mining

introduction features exploration

statistics clustering

silhouette plots

I. Lütkebohle, J. Lüning Applied Data Mining

イロト 不得 トイヨト イヨト

æ

algorithm tool example

Association Rule Mining

Idea

mailing lists with many equal writers are somehow related

item mailing list

transaction all the mailing lists someone writes to within a week

we used the mailing list archive of the ietf

- 171 items (mailing lists)
- 2084 transactions (writers who write to two different mailing lists within a week)

・ロト ・聞 ト ・ ヨト ・ ヨト ・ ヨ

algorithm tool example

Association Rule Mining

association rule:

 $dhc \leftarrow dhcwg dhcipv6$ (10.9, 99.6)

support

proportion of transactions which contain all items from the rule

confidence

accuracy — proportions of all transactions which contain right part of the rule that also contain the left part of the rule

イロト イポト イヨト イヨト 一座

algorithm tool example

Apriori

- rules with enough support are called frequent
- each subset of a frequent itemset has to be frequent
- so the algorithm starts with small itemsets, checks if they are frequent and goes on to supersets of frequent itemsets

イロト イポト イヨト イヨト 一座

Apriori-Implementation by Christian Borgelt

http://fuzzy.cs.uni-magdeburg.de/~borgelt/apriori.html

```
introduction
features
exploration
Association Rule Mining
```

example

```
imrg asrg-announce
ipngwg ipv6
ipngwg ipv6
atommib rohc
ipngwg ipv6
. . .
./apriori -s2 -c90 writers rules.rul
dhc <- dhcwg (11.1, 97.8)
dhcwg <- dhc (11.5, 95.0)
dhcipv6 <- dhcwg (11.1, 98.3)
dhcwg <- dhcipv6 (11.6, 94.6)
```

. . .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで