
Basic idea of encryption

Alice Bob
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Bob wants to send Alice a message.
Oscar can eavesdrop on messages.
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Thus the message should be encrypted.

Florian Heß 3– vi 21C3, Berlin 27.12.2004

Aspects of Elliptic Curve Cryptography

21C3

27. December 2004

Florian Heß
Technische Universität Berlin

www.math.tu-berlin.de/∼hess

Florian Heß 1 21C3, Berlin 27.12.2004

Overview

Reminder of basic cryptographic tasks

Finite fields, ElGamal encryption

Group based cryptography

Elliptic curves

Security aspects, attacks

Florian Heß 2 21C3, Berlin 27.12.2004



Public Key Cryptography

Fundamental tasks:
• Encryption with public key and decryption with secret key.
• Signing with secret key and signature verification with public key.

Requires some sort of one way function f :
• easy to compute f (x),

• hard to invert, i.e. hard to compute f −1(y).

Strictly speaking, such functions are not known to exist.

But there are candidate one way functions which do the job given
current knowledge.
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Candidate one way functions

Candidate one way functions can be obtained by computational
mathematical problems, in particular from number theory.

The inverse operations are usually based on or related to
• Factoring of integers,
• Discrete logarithms in finite fields and elliptic curves over finite

fields.

Other possibilities are
• Shortest and closest vectors in lattices or codewords,
• Solving multivariate equations.

Elliptic curves lead to very efficient systems compared to factoring
integers and finite fields.
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Encryption and decryption with secret keys.
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Basic idea of encryption
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Encryption with public keys and decryption with a secret key.

Florian Heß 3– viii 21C3, Berlin 27.12.2004



Computing modulo prime numbers

Fp := {0,1, . . . , p−1}.

Elements in Fp can be added, subtracted and multiplied like in Z upon
reducing the results modulo p.

Elements in Fp can be inverted and divided if and only if p is a prime
number.
• Example: In F5 the element 2 is the inverse of 3, because

2 ·3 = 6 = 1 mod 5.

Inverses and Divisions can be easily computed using the euclidian
algorithm.
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Finite fields

In the following p is always a prime number and q = pr with r ∈ Z
≥1.

Fp with this modular arithmetic is called a prime finite field.

Let Fq = {λ0 + λ1x + · · ·+ λr−1xr−1 |λi ∈ Fp}.

Using prime polynomials, polynomial division with remainders and
polynomial modular arithmetic (+,−, ·,/) like in the integer case,
the set Fq becomes a general finite field.

#Fq = q.

Fq can be implemented:
Operations constr,+,−, ·,/,= etc are available.
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Integers and prime numbers

The set of integers is

Z = {0,1,−1,2,−2,3,−3, . . .}.
Integers can be added, subtracted and multiplied (+, −, ·).

A prime number in Z is a non-negative integer which is only divisible
by 1 and itself.
• Example: 2,3,5,7,11,13, . . . ,337837575858752378528732593151, . . .

Every integer can be decomposed into prime numbers.
• Example: 350 = 2 ·5 ·5 ·7.
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Division with remainder

Not every division is possible in Z : 5/3 6∈ Z. There are remainders.

Division with remainder:
Let a, p ∈ Z, p > 0. Write a = hp + r mit h,r ∈ Z und 0 ≤ r ≤ p−1.

Then h = a div p and r = a mod p.
• Example: 5 div 3 = 1 and 5 mod 3 = 2, because 5 = 1 ·3 + 2.
• Example: −1 mod 3 = 2, (2 ·3) mod 5 = 1.
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ElGamal Encryption

1. Key generation done by Alice:

: Is random, secret x with 0 ≤ x ≤ `−1.

: Is y = gx. y

Messages: Represented as elements m ∈ Fq\{0}.

2. Encryption done by Bob: Chooses random, secret r ∈ Z.
Computes (gr,myr).

(u,v) (gr,myr).
3. Decryption done by Alice:

Computes vu−x. Then vu−x = mgxrg−rx = m.
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Abstraction

What has been used so far? Computing in Fq, but only multiplication
and inversion, no addition or subtraction or zero element!

A set G, in which elements can be multiplied and inverted in a

”
sensible“ way, is called a group.

ElGamal encryption works in principle in every group
in which the elements can be represented in the form gx.

Question: Are there further well suited groups except F
×
q = Fq\{0}?

Answer: Yes, elliptic curves!
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Discrete Logarithms
Let ` denote a prime number with ` | #(Fq\{0}) = q−1.

There is g ∈ Fq with g` = 1 and the following property:

Every y ∈ Fq with y` = 1 can be written in the
form y = gx for exactly one x ∈ Z with 0 ≤ x ≤ `−1.

The exponent x is called discrete logarithm of y in base g.

Example:

• 34 = 4 mod 7.
• 28023147820686746766250883065146081426910764438761937579795 =

207150505973554698424705346292 mod 337837575858752378528732593151.

The problem of finding x given g,y is called Discrete Logarithm
Problem.
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Discrete Logarithms

Let the prime power q have more than 300 and ` more than 50
decimal digits.

The computation of gx given g and x is
”
easy“.

The computation of x given g and gx is
”
very hard“.

The exponentiation function x 7→ gx is a candidate one way function.

The discrete logarithm problem is the same as inverting the
exponentiation function.
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Elliptic curves
Let q = pr large with p ≥ 5 and a,b ∈ Fq suitable.

An elliptic curve is given by an equation: E : Y 2 = X3 + aX + b.

Points on the elliptic curve E(Fq) = {(x,y) ∈ F
2
q | y2 = x3 + ax + b}∪{O}.

Slightly different equation for p = 2,3 but otherwise analogous.

There are special formulae by which points P,Q ∈ E(Fq) are

”
multiplied“. The point O is the neutral element.

For historic reasons multiplication is written as addition P + Q and
exponentiation by x ∈ Z as multiplication xP.

E(Fq) can be implemented:
Operations constr,+,−, ·,= etc are available.
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Discrete Logarithms
Let ` denote a prime number with ` |#E(Fq).

There is P ∈ E(Fq) with `P = O and the following property:
Every Q ∈ E(Fq) with `Q = O can be written in the
form Q = xP for exactly one x ∈ Z with 0 ≤ x ≤ `−1.

The exponent x is called discrete logarithm of Q in base P.
The problem of finding x given P,Q is the ECDLP.
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Elliptic curves
Let q = pr large with p ≥ 5 and a,b ∈ Fq suitable.

An elliptic curve is given by an equation: E : Y 2 = X3 + aX + b.

Points on the elliptic curve E(Fq) = {(x,y) ∈ F
2
q | y2 = x3 + ax + b}∪{O}.

Slightly different equation for p = 2,3 but otherwise analogous.

There are special formulae by which points P,Q ∈ E(Fq) are

”
multiplied“. The point O is the neutral element.

For historic reasons multiplication is written as addition P + Q and
exponentiation by x ∈ Z as multiplication xP.
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Elliptic curves
Curve and group law
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Problems and questions

with respect to security and practicability.

1. How construct E with `|#E(Fq) (
”
point counting“)?

2. Special cases where ECDLP is easy?

3. Optimisations of speed/memory usage (e.g.
”
point compression“).
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Construction of suitable elliptic curves

Have #E(Fq) = q + 1− t where |t| ≤ 2
√

q unknown.
Need to know `|#E(Fq).

Random E: Randomly choose a,b ∈ Fq. Compute #E(Fq).
Subfield E: Choose a,b ∈ Fp. Write down #E(Fq) using #E(Fp).

Check `|#E(Fq) by trial division of small factors and primality test.

Complex multiplication E: Construct E with known #E(Fq).

The subfield and complex multiplication constructions yield curves
with more mathematical structure than random curves. This could
potentially be useful for an attack ...
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Hardness of the DLP

It is believed that the most efficient method for solving a random
ECDLP in E(Fq) for random a,b ∈ Fq cannot take advantage of the
special structure of E and hence requires at least ≈ `1/2 steps.

In other words it is expected that such an ECDLP has maximal
security in group based cryptography, in relation to the group size
#E(Fq).

Elliptic curves have been proposed for cryptographic use in 1986.

The time for solving the DLP in F
×
q is more like

min{`1/2,exp(c log(q)1/3)}.
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Comparison

Comparison of key sizes for roughly equal security.

Block cipher Example ECC RSA / F
×
q

key size block cipher key size key size
80 163 1024
112 3DES 233 2048
128 AES 283 3072
192 AES 409 7680
256 AES 571 15360

ECC with 517 practical, but RSA or F
×
q with 15360 not.
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Insecure cases

”
Weil descent methodology“ or

”
covering attacks“

(Gaudry-Hess-Smart, Diem, 2000-3)

q = 2r, k = Fq, K = Fqn, E elliptic curve over K.

An algebraic curve C0 defined over k is constructed such that

the ECDLP in E(K) can be efficiently transferred to a DLP in Pic0
k(C0).

Under certain circumstances the DLP can be solved faster in Pic0
k(C0).

Security reduction possible if n ≥ 3 is small or medium.
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Insecure cases
Index calculus attack via summation polynomials and Weil restriction
(Semaev, Gaudry, Diem, 2004).

Introduces a size notion on points in E(Fqn) such that points
decompose into a small number of

”
small“ points (like a prime

factorisation) ...

The ECDLP in E(Fqn) can be computed in time O(q2−2/n) for fixed n
and q → ∞ instead of `1/2 ≈ qn/2.

The ECDLP might even be computed much more efficiently if
n ≈ log(q) grow together.

The ECDLP for small or medium n ≥ 3 for general q may be weaker
than expected!
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Insecure cases
Multiplicative transfer (Frey-Rück reduction,
Menezes-Okamoto-Vanstone attack, 1991).

Assume ` | (qk −1) with k ≥ 1 minimal.

It is possible to efficiently transfer the ECDLP into a DLP in F
×
qk.

The DLP in F
×
qk is still quite hard.

For random and independent q and `: log(k) ≈ log(`).
For supersingular elliptic curves (t = 0 mod p): k ≤ 6 !

Random and independent case no problem, but supersingular elliptic
curves much weaker than generically expected.

Are still useful, for example in identity based cryptography.
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Insecure cases

Additive transfer (Rück or SmartASS attack, 1997).

Assume ` = p (anomalous or trace one curves).
It is possible to efficiently transfer the ECDLP into a DLP in F

+
p.

The DLP in F
+
p is very easy.

Hence the case ` = p is totally insecure.
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Avoiding insecure cases

The last two attacks do not yield such a strong security reduction like
the multiplicative transfer, let alone the additive transfer.

Any of these attacks can be easily avoided, for example:
• Use random elliptic curves E.
• Use only prime fields Fp, or extension fields Fpr with r a big prime

and p small, for E.

If you cannot use your own elliptic curve, maybe you can use a curve
created verifiably at random:
• a,b are given via cryptographic hash values of two published

numbers ...
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Conclusion

Elliptic curves can be used to implement group based cryptography.

They provide a very high efficiency / security ratio.

Research in possible attacks is still actively carried out.

The known attacks can be quite easily avoided using random elliptic
curves over suitable finite fields.

Quantum computers are bad for group based cryptography and RSA.
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